Introduction to
HPC Cluster (day 1)

First Summer School in HPC and Al

7th - 8th June 2021 Free University of Bozen
Marco Cianfriglia <m.cianfriglia@iac.cnr.it>



\WisTe X =120

=—=ROMA

Cranic Research Gr oup UNIVERsﬁA DEGLI STUDI

www.cranic.it

NVIDIA.

4O\

SAPIENZA

Qe .]
y UNIVERSITA DI ROMA




WWW.Cranic.it

Cranic Computing

Home Projects People Partners Open Positions Contacts

The Research Group

The research group is based in Rome at the Institute for Applied Computing (IAC) that is part of the National Research Council
(CNR) of ltaly (iac-cnr)

Our main areas of expertise are High Performance Computing (HPC), Security and Anonymity Networks, specific topics
include:

Research Areas

High Performance Computing (HPC) Security

* Code Optimization and Parallelization « Applied Cryptography and Cryptanalysis
* General-purpose Computing on Graphics Processing » Digital Forensics
Units (GPGPU) * Malware Analysis
« HPC for Big Data Analysis  Virtual Machine Introspection (VMI)
o Parallel and Distributed Computing

Anonymity Networks Data Science

* Anonymity Networks » Aggregate statistics, Indexes, and Innovative Graph for
o Darknets Decision Makers
« Onion Routing « Bayesian Modeling applied to Language Processing

» Geostatistics model applied to Circular Data

* Neural Networks and Deep Learning

* Topic Modeling




Agenda

e Abriefintroductionto HPC
e Accessto Unibz cluster
e Unix/Linux fundamentals

e Bashscripting



A brief introduction to \
HPC



What is an HPC Cluster

OMPUTING NODES

J |

e Acollection of computer, called nodes

(
connected by a fast network g = g E
| | .

e There may exist different types of
nodes for dedicated tasks (example,

equipped with GPUs) I—

e Aspecial node, called login-node [
where users login and submit jobs

INTERCONNECTION

e Astorage areashared among nodes

. TN



When do we need an HPC cluster?

Computations require much more memory than the amount available on your computer
Simulations that need to be executed many times with different inputs
Programs that may be run in parallel (MPI, OpenMP) speeding up the computation

Some applications may benefit of hardware accelerators, like GPUs



TOP 3 HPC in the world (November 2020 list)

Rmax Rpeak Power
System Cores (TFlop/s) (TFlop/s) (kW)

7,630,848 442,010.0 937,212.0 29,899

2,614,592 148,600.0 200,794.9 10,096

IBM

United States
1,572,480 94,640.0
IBM / NVIDIA / Mellanox

United States

https://www.top500.org/lists/top500/list/2020/11/



HPC Iin numbers

Soruce blog.global.fujitsu.com

ORIKEN

Fugaku Supercomputer - 1st HPC
system in the world - Top500
November 2020

158976 nodes

7630848 cores

~ 5PB of Memory (5087232 GB)
~442010 TFlop/s

“The six-year budget for the
system and related technology
development totaled about $1

billion”
( The Ney York Times 2020-06-22)



HPC cluster vs laptop

Cray/HPE

Switzerland

In 2017, Piz Daint was in third position of the Top500 list:

“what Piz Daint can process in one day, a laptop would take 900 years.” (*)

(*) https://www.swissinfo.ch/eng/speed-processing_swiss-supercomputer-third-fastest-in-the-world/43271536

10



HPC Applications

Source Forbes Source Forbes Source Wikipedia

S
Oueng

=
. L 2
\ &
\\ d .
4 N
\f!‘),‘ eS8, S

11

Source Ohio.edu Source Colorado.edu Source Wikipedia



Access to Unibz Cluster

N\

12



Connect to login node: slurm-ctrl.inf.unibz.it

1. Connectto VPN with your credentials (if
needed).
Please use your full username (@domain)

2. Connect to the login node:
ssh <username>@slurm-ctrl.inf.unibz.it

Y Cisco AnyConnect Secure Mobility Client

@ Connection ||# Statistics | (@ About

Connect to:

Username: | gst_mcianfriglia@unibz.it

Password: | |

Connect

Please enter your username and password. 13



Login node

>- | Terminal - marco@fedora: ~

File Edit View Terminal Tabs Help

[marco@localhost ~]$ ssh gst mcianfriglia@slurm-ctrl.inf.unibz.it
gst_mcianfriglia@slurm-ctrl.inf.unibz.it's password: l

> | Terminal - gst_mcianfriglia@slurm-ctrl: ~

File Edit View Terminal Tabs Help
gst mcianfriglia@slurm-ctrl:~$hostname

slurm-ctrl
gst mcianfriglia@slurm-ctri:~sjj

14



Unibz Storage

12[0],73

e |tisshared among all the nodes
SCRATCH

e itisavailable on /scratch

e ltislocal toeach node

° It is a temporary storage

For the hands-on we will use the home partition, unless specified.

15



Scratch partition

It is a temporary fast, unreliable storage, that can be used in several HPC scenarios:

e You need to store some temporary data during a long computation
e Your input dataset is too big to be stored on a permanent storage

e Your application uses intensively I/O and you may take advantage of fast storage
Two scratch deployment options :

e Localtothe node
e Shared among cluster nodes

16



Unix/Linux
fundamentals

17



History

Origins and history
o  Developedin 70 by Bell Labs
o Extreme portability and flexibility, it is written in C

Many proprietary distributions/implementations
o  AIX(IBM),SOLARIS (SUN),
o Mac OS X (Apple), HP-UX (HP)

Many Open-source distributions/implementations
o  Linux (Debian, Suse, Red Hat, Ubuntu, ...)
o FreeBSD, OpenBSD, ...
o  Android

18



Features

multi-taskin
o  Many programs can be executed concurrently
o  The computational and memory resources are shared among processes

multi-user
o Different users can work concurrently on the same machine

memory protection
o  Every process can have exclusive access to an area in memory. This mechanism improves security
and stability of the whole system

19



Users

On Unix every user can start working only after a successful authentication. This usually
requires a and a corresponding

To each user are assigned some resources (e.g. disk space)

An unique identifier is assigned to each user together with the Group Identifier
These IDs are used by the system to manage the permissions

There exist some users with special privileges. The default is
o ithas maximum privileges
o Itcando (almost) everything on the system
o Itischaracterized by UID=0

20



Shell

They provide an interface between the operating system and the users.

They are special programs that allow users to run and manage other programs (for
example: redirect input/output, scripts, etc)

There exist several implementations sh, csh, ksh, tcsh, bash but the latter two are the
most used

21



Secure SHell (SSH)

e SSHisaprogram for logging into a remote machine and for executing commands on it

e |testablishes asecure encrypted channel between two hosts over an insecure network

e Examples:

a.

b.

ssh <username>@host # login on host with user <username>

ssh <username>@host mkdir -p testdir # launch mkdir command on host

ssh -lusername host  #Same as a)

ssh -i <path-to-private-key> username@host # You may use public key authentication

ssh -L8888:localhost:8890 username@host # Some advanced features - port forwarding

22



Secure CoPy (SCP)

It copies files (and directories) between hosts on a network
It relies on ssh for data transfer, and uses the same authentication of ssh

The source and target may be
a. local pathname (absolute or relative paths)
b. remote host path

Examples:
a.  scp local-file <username>@remote-host: <dest>#Copy local-file to remote host

b.  scp <username>@remote-host <remote-file>. #Copy remote-file tolocal host on
# the current directory (.)

c.  scp-rlocal-dir <username>@remote-host dest # Copy recursively a directory

23



Exercise: Move file from/to the unibz cluster

1. Use scpto copy the file /tmp/testscp from the login-node to your computer

2.  Onyour computer, create a text file <name.surname> and fill it with your name
(es. marco.cianfriglia)

3.  Copy the <name.surname> file from your pc to the home directory on the login-node

4. Use sshto execute the following program on the login-node ‘cat <name.surname>’
(use your name and surname)

Login-node:

24



Exercise: Move file from/to the unibz cluster
Solution

1. Usescpto copy the file /tmp/testscp from the login-node to your computer

a. scp gst mcianfriglia@slurm-ctrl.inf.unibz.it:/tmp/testscp .

2.  Onyour computer, create a text file <name.surname> and fill it with your name

3. Copy the <name.surname> file from your pc to the home directory on the login-node

a.  scp marco.cianfriglia gst mcianfriglia@slurm.ctrl.inf.unibz.it:

4. Use sshto execute the following program on the login-node ‘cat <name.surname>’
(use your name and surname)

a. ssh gst mcianfriglia@slurm-ctrl.inf.unibz.it cat marco.cianfriglia

25


mailto:gst_mcianfriglia@slurm-ctrl.inf.unibz.it
mailto:gst_mcianfriglia@slurm.ctrl.inf.unibz.it
mailto:gst_mcianfriglia@slurm-ctrl.inf.unibz.it

Unix file system

is called the root directory
// \\
fi=r lib tmp home e Eachfileonthe file systemhas a
/ //\ unique pathname starting from /
bin 1ib local
ttya n 1” / e The path names starting with / are
passwd 8roup called absolute paths, otherwise
are called relative paths

userl user2 user3

sh date csh
T

S

mail bin  papers /home/user1/papers (absolute)

user1/papers (relative, starts

EEYE pa.th: be careful. from /home)
Example: bin?
e /bin e Two special names:
. o .. parent directory
e /usr/bin o .currentdirectory

e /home/userl/bin

It depends on your
(pwd or echo $PWD) 26




Some basic commands

Command Usage Command Usage
name name
Is Prints the list of files and cp Copies files and directories
directories
mv Moves files or directories rm Removes files and
directories
mkdir Creates a new directory cd Changes working directory
rmdir Removes directories pwd Prints current working

directory

27



File system commands example

e Move to /usr directory (absolute path)
o cd/usr

e From /usr move to local/lib (relative path)

o pwd #Print working directory
Jusr
o  cdlocal/lib; pwd #The ; can be used to sequence of commands on the same line

Jusr/local/lib

e Move back to the parent directory (i.e. /usr/local)
o cd..(Notice the blank space between cd and ..)

28



Some Unix commands

Command Usage Command Usage
name name
file Prints file type echo Prints input string
cat Prints the content of a file sort Order a file
head Prints the first lines of a file tail Prints the last lines of a file
less, more | Prints the content of a file page cut Selects columns of a file
by page
paste Merges files by columns find Look for files/directories in
the filesystem
diff, sdiff Shows differences between grep Look for a pattern inside a

files

file

29



Grep

Look for all the words contain ‘apple’ in /usr/share/dict/words
o  grep apple /usr/share/dict/words

Look for all the words starting with ‘apple’ in /usr/share/dict/words
o  grep “apple /usr/share/dict/words

. (period character) Any single character can exist at the specified location
[C1C2..Cn] ClorC2or..orCn
[AC1 C2...Cn] everything = C1, ..., Cn
Pattern* The pattern 0 or more times
Pattern+ The pattern 1 or more times
S The beginning of the line
$ The end of the line

30



stdin, stdout, stderr

Usually a program:

o

(@)

o

reads the input from the standard input,
writes the output on the standard output,
writes any error on the standard error,

If not specified:

= keyboard
= = screen

31



stdin, stdout, stderr

e Itispossible to redirect stdin, stdout and stderr.

On Bash:

e ‘<’'redirects the stdin
‘>’ and ‘2>’ redirect respectively stdout and stderr to a file (if file exists it will be
truncated, else it will be created)

e '>>'or‘2>>"will append to an existing file

e ‘&>’redirects both stdout and stderr

Ky



stdin, stdout, stderr
Examples

Is -1 >list.txt # The output of ‘Is -I' will be stored in the file list.txt
# If list.txt exists, it will be truncated, otherwise it will be created

Is -1 >> list2.txt # The output of ‘Is -I’ will be stored in the file list2.txt
# If list2.txt exists the new content will be appended at the end of the file

sort < input_file.txt > input_file.sorted
sort will read input_file.txt and its output will be saved on input_file.sorted

fakecommand 2> error.out

33



Exercise shell

Redirect on the file out1.txt the stdout of the following command: ‘Is -1 ${HOME}
Redirect on the file err1.txt the stderr of the following command: ‘fakecmd run’
Run the following command and append the stdout on out1.txt and redirect

the stderr on err2.txt

Is / mickeymouse

Print the content of out1.txt and err2.txt on screen using cat

34



Exercise shell
Solutions

Redirect on the file out1.txt the stdout of the following command: ‘Is -1 ${HOME}
& Is-1 ${HOME} > out1.txt

Redirect on the file err1.txt the stderr of the following command: ‘fakecmd run’
¢  fakecmd run 2> errl.txt
Run the following command and append the stdout on out1.txt and redirect
stderr on err2.txt : Is / mickeymouse
¢ Is/mickeymouse >> out1.txt 2>err2.txt

Print the content of out1.txt and err2.txt on screen using cat

<  catoutl.txt
<  caterr2.txt

35



Exercise shell

Run the following command and redirect both stdout and stderr on outerr3.txt
Is / mickeymouse

Print the content of outerr3.txt using less/more
Sort the entries in the file out1.txt and save the results in file out1.sorted

Create adirectory in your home called output

36



Exercise shell
Solutions

Run the following command and redirect both stdout and stderr on outerr3.txt
Is / mickeymouse

< Is/mickeymouse &> outerr3.txt

Print the content of outerr3.txt using less/more

%  |essouterr3.txt
< more outerr3.txt

Sort the entries in the file out1.txt and save the results in file out1.sorted
%  sortoutl.txt > outl.sorted

Create adirectory in your home called output
¢ mkdir ${HOME}/output

37



Exercise shell

Change your working directory to ~/output ( ~ refers to the home directory)
Print your current working directory
Copy outl.txt outl.sorted and out2.txt into the current working directory (~/output)

Copy the directory ~/output to your local computer /tmp folder (hint: remember scp)

38



Exercise shell
Solutions

Change your working directory to ~/output ( ~ refers to the home directory)
%  cd ${HOME}/output or cd ~/output
Print your current working directory
¢  pwd
Copy out1.txt outl.sorted and out2.txt into the current working directory (~/output)

& cp ${HOME}/out1.txt ${HOME}/out1.sorted .
¢ cp ${HOME}/out1.txt ${HOME}/out1.sorted ${HOME}/output

Copy the directory ~/output to your local computer /tmp folder (hint: remember scp)
& scp -r <username>@slurm-ctrl.inf.unibz.it:output /tmp

39



The pipe |

e Apipe‘| allows to concatenate commands by redirecting the stdout of a command as the
stdin of the next command.

e |tisasimple yet powerful tool that allows to solve efficiently many tasks

List in alphabetical order all the different words of a text, with the number of occurrences next
to them, in order of frequency (first the most frequent words).

e tr-s '' '\n'<text| sort| uniq-c| sort-n-r

40



Exercise pipe

e Print the files and directory of the /tmp folder on the login-node, one record per line
(hint: see man Is), sort the records lexicographically and store the result on
~/output/tmp.sorted

< Is-1/tmp| sort > ~/output/tmp.sorted

41



Linux file permissions

Is -la Octal Binary Permission
-rwxrw-r-x  user group filename

_ ; 0 000

drwx---r-x  user group directory - e -

. 2 010 -w-

e Whatdoes it mean? 3 011 WX
=read, " =write, =execute (regular files) . 100

. . r=-

=read, ' =create/remove, ~=search (directories) 5 101 r-x

=read, ' =write, “=n/a (special files, like device files) 6 101 rw-

7 111 rwx

e How tochange files and directories permissions?
chmod [OPTION] MODE/OCTAL-MODE FILE ...
What does the following command chmod 753 file ?



Linux File Permissions

% 1s -1
total 4
—-IrW=T==r-- 1 roberto usrmail 17 Mar 11 16:16 filel

-rwW=r—--r—-- 1 roberto usrmail %? Mar 11 16:17 file2
A X A A A 5 X

authorizations
File
nurpber of dimension
links (in character) Date/time of
last modify

file name

file type:

- regular file
d directory
b block device
¢ character device
s symbolic link




Exercise command line

e List the permissions of the file ~/output/out1.txt

e Set the permissions for ~/output/out1.txt to rwx for the owner, rw for the group and zero
permission for other

e Set the permissions for the ~/output directory to r-- rw-rw- . Can you list the content of the
directory? Can you access the content of its files?

e Set the permissions for the ~/output directory to --x rw-rw- . Can you list the content of
the directory? Can you access the content of its files?

44



Exercise command line

e Listthe permissions of the file ~/output/out1.txt
& Is-l~/output/outl.txt

e Set the permissions for ~/output/out1.txt to rwx for the owner, rw for the group and zero
permission for other

< chmod 760 ~/output/out1.txt

e Set the permissions for the ~/output directory to r-- rw-rw- . Can you list the content of the
directory? Can you access the content of its files?

%  chmod 566 ~/output; Yes, but error; No

e Set the permissions for the ~/output directory to --x rw-rw- . Can you list the content of
the directory? Can you access the content of its files?

«  chmod 166 ~/output; No; Yes

45



Bash and scripting

N\

46



Some BASH important files

When an interactive shell starts it reads and executes the ~/bashrc config file

When bash is invoked as an interactive login shell it reads and executes commands from
the files (if they exist)

(@)

@)
@)
(@)

/etc/profile
~/bash_profile
~/.bash_login
~/.profile

When a login shell exits, bash reads and executes commands from the file ~/.bash_logout,
if it exists.
The commands history can be found in ~/.bash_history

o

Command history displays the content of ~/bash_history

47



vi Editor

vi is acommand line editor, available on Linux (vim the enhanced version)

Two operative modes:

e Command-mode
e [nput-mode

It starts in command-mode; you may switch from command to input modes by using several
commands (see next slides)

To exit input-mode, use the Esc button (<ESC>)

Once in input-mode, any character you insert will be treated as text and it will be added to your
file.

48



vi editor minimal cheetsheet

TE Y @E & = W

Input Commands

(end with <ESC>)
Append after cursor
Append after line
Insert before cursor
Insert before line
Open line below
Open line above
Replace one character
Replace many characters
Put after
Put before

File Management Commands
(please note the ‘:’ before commands)

:w  Store the file content

:wq Store the file content and quit

X Same as :wq

:q!  Quit without saving changes
Auxiliary commands

X Delete character to right of cursor

X Delete character to left of cursor

D Delete the rest of the line

dd Delete currentline

y Copy the current line

u Undo last change

49



vi Example

From your terminal

e Launchvitostart writing a new file
vimy_file

From vi

e Switch from command-mode to input-mode
Pressi
e Write your name

e Come back to command-mode, save the content and quit vi
a. Press <Esc> to exit input-mode
b. :wqor:xor:wand:qtosave changes and quit

50



Bash scripting

It is possible to automate some operations by using a shell script

>- | Terminal - gst_mcianfriglia@slurm-ctrl: ~

Example: test.sh File Edit View Terminal Tabs Help

gst_mcianfriglia@slurm-ctrl:~$cat test.sh
#!/bin/bash

S="count"

for i in 0123
do
echo "${S}:${i}"
done
gst_mcianfriglia@slurm-ctrl:~$./test.sh
count:0
count:1
count:2

In order to execute it Count2

gst mcianfriglia@stlurm-ctri:~sf]

1. chmod u+x test.sh # add execution permission to the owner
2. ./testsh # execute it



Bash scripting

Example: test.sh

e #l shebang: is used to tell the operating
system which interpreter to use to parse the
rest of the file

e S isavariable

e fordo ... done defines a loop

e jis the variable that counts the loop iterations

e echo: a shell command that takes as input a
string and it prints it to the screen

52



Bash Variables

Variables allow programmers to store data, alter and reuse them throughout the script
Any variable can get any kind of data, basically strings or numbers
The name of the variable is the string preceding the =

To access the value of a variable use the $

S="summer school” #Assing the string “summer school” to S

echo “${S}" # Echo print the value of S

53



Bash Built-in variables

$# contains the number of input parameters (like argc)
$0 contains the script name

$j with 1 <= j<= $# are the input parameters

$? the exit code of the last executed command

$IFS Internal Field separator (default space, tab, and newline)

54



if [ TEST]
then

<do some stuff>
elif [ TEST2 ]
then

<do some stuff-2>
else

<do some stuff-3]

Bash if-then-else

The if-then-else statement starts
with if keyword, followed by a
conditional expression and the
keyword then.

The statement ends with the
keyword fi

The else /elif statements are
optionals

The elif is followed by a conditional
expression and the keyword then

It is possible to have nested if
statements

55



Common test operator

INT1-eq INT2: Trueif INT1==INT2
INT1-ne INT2: Trueif INT1 !=INT2
INT1-gt INT2: Trueif INT1 > INT2
INT1-ItINT2: True if INT1 < INT2
INT1-ge INT2: True if INT1 >=INT2
INT1-le INT2: True if INT1 <=INT2
STR1=STR2: True if STR1 is equal to STR2

STR1!'=STR2: True if STR1 is not equal to STR2

-d FILE: True if FILE exists and is a directory
-e FILE: True if FILE exists and is a file

-f FILE: True if FILE exists and is a regular file
-r FILE: True if FILE exists and is readable

-w FILE: True if FILE exists and is writable

-x FILE: True if FILE exists and is executable
-n VAR: True if the length of VAR is >0

-z VAR: True if the VAR is empty

56



If-then-else examples

#!/bin/bash

#This is acomment

ARGC=2

if [ $# -ne ${ARGC}]

then
echo “Usage $0: <src> <dst>"
exit 1

fi

cp $1%$2

exit $?

#!/bin/bash

ARGC=1

USER="test-user”

if [ $# -ne ${ARGC}]

then
echo “Usage $0: <user>"
exit 1

fi

if[“${USERY’ == “${1}']
then

echo “Hi ${USER}”
else

echo “Bye”
fi

57



Bash array

An array is a variable containing multiple values.
Any variable may be used as an array.

There is no maximum limit to the size of an array, nor any requirement that member
variables be indexed or assigned contiguously.

Arrays are zero-based: the first element is indexed with the number O

58



Bash array

Multiple declaration options:

Indirect declaration: ARRAY[idx]=value, idx is treated as an arithmetic expression that must
evaluate to a positive number

Explicit declaration : declare -a ARRAY (declare shell builtins)
Compound assignments: ARRAY=(valuel value2... valueN)

Dereferencing the variables in an array:
o  echo ${ARRAY[*]} # print all the array values * or @ have the same effect. NB the {} are necessary
o echo ${ARRAY[2]} # print the second element of the array

59



# Explicit range
foriin12...N
do

<do stuff oni>
done

# Explicit range
for fin filel file2 ...fileN
do

<do stuff on f>
done

Bash for loops

# Range border
foriin{1..100}

# lterates over cmnd-output
for rin $(Unix/Linux cmd output)
do

<do stuffonr>
done

do
<do stuff oni>

done

# For-loops and array
F=("file1” “file2” ... “fileN”)

for rin ${F[@]}
do

<do stuffonr>
done

60



Bash while loop

while [ condition]
do

<do some stuff>
done

#!/bin/bash

x=0

while[ $x -1t 10]

do
echo “${x}”
x=$(($x + 1))

done

e Toiterate over variable, for loops are
more convenient
No need to update the counter

e While loops usually used to read data
line by line from a file

#!/bin/bash

INPUT_FILE="/etc/passwd”
while read -r line
do
echo $line
done < “${INPUT _FILE}”

61



Exercise

Write a Bash script (counter.sh) that prints all the number from O to 1000

Write a Bash script (lines.sh) that reads the output of ‘Is -1 /tmp’ and add the prefix “LINE:”
toeachline

Write a Bash script (heartbit.sh) that takes as input a file containing a list of ip addresses,
one per line and the name of the output file

For each ip address, run the command “ping -c 2” and save its output and error by
appending it to the output file.

Write a Bash script (compareFiles.sh) that takes as input two files and returns the one that
has more lines

62



Exercise
Solution

{3 Terminal - marco@fedora:~/Doc A — O X

File Edit View Terminal Tabs Help

#!/bin/bash
#counter.sh E Terminal - marco@fedora:~/Documents/Didattica/UniBZ Summ Ao _ O X

File Edit View Terminal Tabs Help

for i in {1..1000}

63

do #!/bin/bash
echo ${i} #heartbit.sh
done
n if [ $# -ne 2 ]
then
echo "Usage $0: <input-file> <output-file>"
8,0-1 All exit 1
fi
{3 Terminal - marco@fedora:~/Doc A — O X
File Edit View Terminal Tabs Help while read -r line
#!/bin/bash do
#lines.sh ping -c 2 $line &>> $2
done < "s1f
for 1 in $(ls -1 /tmp) 13,11 All
do
echo "LINE: ${1}"
done
n
8,0-1 All




z Terminal - marco@fedora:~

File Edit View Terminal
#!/bin/bash
l#compareFiles.sh

if [ $# -ne 2 ]
then

exit 1
fi

1F I [ == 2§15 7]
then
echo "Error
exit 1
fi
1F [ «<F g2 7]
then
echo "Error
exit 1
fi

c1=0

while read -r line
do

done < "$1"

c2=0

while read -r line
do

done <"$2"

if [ $c1 =gt $c2 ]
then

else

fi

Tabs

$1 is

$2 is

cl=%(( $cl + 1))

echo "$1 has $cl lines"

€2=$(( $c2 + 1))

echo "$2 has $c2 lines"

echo "$1 WIN"

echo "$2 WINR

Documents/Didattica/UniBZ_SummerSchoolHPC/test

elp

echo "Usage $0: <filel> <file2>"

not a regular file"

not a regular file"

39,14-21

Exercise
Solution

>- | Terminal - marco@fedora: ~/Documents/Didattica/UniBZ_SummerSchoolHPC/test

All

File Edit View Terminal Tabs Help
#!/bin/bash
#compareFilesH. sh

if [ $# -ne 2 ]

then
echo "Usage $0: <filel> <file2>"
exit 1

fi

1F [ =T 2§15 7]

then
echo "Error $1 is not a regular file"
exit 1

fi

1f L [ «<F "g2" 7]

then
echo "Error $2 is not a regular file"
exit 1

fi

cl=$(wc -1 "$1" | cut -d' * -f 1)

echo "$1 has $cl lines"

c2=$(wc -1 "$2" | cut -d' ' -f 1)
echo "$2 has $c2 lines"

if [ $cl -gt $c2 ]

then
echo "$1 WIN"
else
echo "$2 WIN"
fi
“compareFiles2.sh" 32L, 428B written 2,14

All




