
1st Summer School in HPC and AI (UniBZ, June 2021)
Introduction to Shared Memory Programming with OpenMP

Philipp Gschwandtner, Research Center HPC, University of Innsbruck
with special thanks to Lukas Einkemmer and Rolf Rabenseifner on whose original slide sets parts of this course are based

2

 Modern supercomputers are built by
connecting a large number of
individual compute nodes

 Each node can have multiple CPUs
and cores
 illustration on the right is simplified

 Parallelization is essential to exploit
modern hardware!

Motivation: Why use Parallelism?

Memory Memory

Memory Memory

Network

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Motivation: Why consider using OpenMP?

3

 OpenMP is one of the easiest parallel programming models & widely available
 however, restricted to shared memory hardware (=no network)
 there are alternatives, e.g. Intel TBB, but none as widely spread and/or mature

 modern hardware encourages use of such models
 AMD x86 desktop: Threadripper 3990X with 64 cores and 128 threads
 Intel x86 server: 8x Xeon Platinum 827x or 828x with 28 cores / 56 threads = 224/448
 Marvell ARM: ThunderX3: 96 cores and 384 threads
 exotic hardware: SGI Altix UV (“Mach 2” @ JKU in Linz, Austria) with 4096/8192

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

4

 MPI
 initially a sequential program
 start to parallelize
 program won’t work until major parts

of parallelization present

 OpenMP
 initially a sequential program
 parallelize incrementally
 program remains functional

throughput parallelization process

Motivation: Incremental Parallelization

time and effort

pe
rf

or
m

an
ce

sequential
program

OpenMP

MPI

non-functional
program

start of
parallelization

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP

5

 thread-based programming model for shared memory parallelism
 provides a higher level of abstraction compared to pthreads, C++ STL threads, etc.
 e.g. “run this loop in parallel” vs. “execute this list of statements asynchronously”

 de-facto standard for C/C++ and Fortran

 maintained by the OpenMP Architecture Review Board
 initial release in 1997 (version 1.0 for Fortran)
 updates in 1998 (1.0 for C/C++), 2000 (2.0), 2005 (2.5), 2008 (3.0), 2011 (3.1),

2013 (4.0), 2018 (5.0), 2020 (5.1)
 this slide set assumes at least OpenMP 3.1!
 https://www.openmp.org/specifications/

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

https://www.openmp.org/specifications/

6

 Thread
 is a set of sequential instructions that are

executed in order
 is a software construct
 often mapped to a single core

 Core
 is a set of hardware components that

process instructions of a thread
 is a hardware construct
 sometimes, cores are partially split into

hardware threads (e.g. HyperThreading)

 Shared memory
 assumes all threads have direct read

and write access to the same memory

 Distributed memory
 not all threads have direct read/write

access
 data transfers via network are required

Detour: Parallelism Terminology

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

7

 shared memory
 single memory address space
 usually based on threads
 all data can be accessed directly
 synchronization (e.g. barriers) required

to ensure correctness

lock();
x[0] += 42;
unlock();

 distributed memory
 multiple memory address spaces
 usually based on processes
 data cannot be accessed directly
 message exchange required to get data

and ensure synchronization

x = recv_data(…);
x[0] += 42;
send_data(x, …);

OpenMP vs. MPI, Shared vs. Distributed Memory

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 20218

 compiler-based parallelization model
 tell the compiler what should happen and when/where
 compiler and runtime system do the rest of the job for

you

 portable across many hardware architectures /
platforms

 runtime system responsible for managing threads,
scheduling, affinity, etc.

 C/C++ and Fortran bindings
 even a research compiler for Java is available…

 aims at minimal changes to sequential code

#pragma omp parallel for
for(int i = 0; i < N; i++) {

out[i] = in[i];
}

OpenMP’s Main Characteristics

OpenMP’s Caveats

9

 compiler-based parallelization model
 tell compiler what code to run in parallel and when to synchronize
 tell compiler whether to share data among threads or create private copies
 but compiler cannot/will not check semantic correctness

 Won’t somebody please think of the compiler developers?

 only works in shared memory

 no guaranteed performance portability
 it will run on any hardware, but maybe not as fast

Helen Lovejoy

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP Implementations

10

 many implementations available
 GCC, LLVM, Intel, Microsoft, etc.
 allow to run OpenMP virtually on every platform
 compiler and runtime support required

 sometimes interchangeable components
 check https://www.openmp.org/resources/openmp-compilers-tools/ for compiler support

 do not confuse implementation adherence with specification adherence
 many minor semantics in OpenMP are implementation-defined

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

https://www.openmp.org/resources/openmp-compilers-tools/

How to Choose between OpenMP and MPI?

11

 all considerations on the last two slides, plus:
 OpenMP is a language extension, hence requires compiler support
 MPI is a library, hence compiler-independent

 often used together, referred to as “hybrid” parallelism, e.g.
 one MPI process per shared memory node, CPU, or NUMA domain
 multiple OpenMP threads per MPI process for the individual cores / hardware threads

 Choose your weapon wisely!

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP Programming and Execution Model

13

 fork-join parallelism
 program starts sequentially
 parallel regions can be opened, which

spawn new threads
 end of parallel regions synchronize threads
 afterwards, execution continues

sequentially

 There is no guarantee in which order
the threads are executed
 specific order can be enforced, but this is

very expensive and usually not desired

Execution Model

master
thread

team of
threads

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

14

 mark code regions with directives or pragmas
(version 5.1: also C++ attributes), e.g.
 parallel regions
 work to be distributed
 thread synchronization

 add clauses for further information, e.g.
 which variables to share, which not to
 scheduling strategies

 any valid OpenMP program must be a valid
sequential program if all pragmas are removed!
 easy to do: remove OpenMP compiler flag
 facilitates debugging

int f = ...
#pragma omp parallel shared(a,b,c,f)
default(none)

{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Programming Model

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

15

int f = ...
#pragma omp parallel shared(a,b,c,f)
default(none)

{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Programming Model cont’d

0 1 2 3 4 5 6 7

parallel
region work-

shared
loop

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

16

 OpenMP is based on threads
 all threads have access to global,

shared data
 each thread has additional local,

private data
 modifications to private data are not

visible across threads
 modifications to shared data are visible

across threads and need to be done
carefully

Memory Model

shared memory

private memory

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP API

18

 pragmas (also “directives”)
 control constructs

 parallelism & work sharing

 data sharing
 private & shared variables, initialization

 synchronization
 critical & atomic sections, barriers

 library functions
 querying/controlling runtime system
 timing
 locking

 environment variables
 degree and nesting of parallelism
 loop scheduling
 thread mapping and binding

OpenMP API

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

19

 #pragma omp directive [clause
[, clause]] (newline)

 pragmas must be on their own source code line
and end with a newline

 OpenMP directives can often take a number of
optional clauses, possibly with parameters

 pragmas have dynamic and lexical extent
 e.g. #pragma omp for must always be nested in

#pragma omp parallel
 but not necessarily statically

(see example on the right)

void bar() {
#pragma omp for
for(...) { ... }

}

void foo() {
#pragma omp parallel
bar();

}

Pragmas

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

20

Combined Pragmas

#pragma omp parallel for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

21

 #pragma omp parallel
 must be followed by a statement or

another OpenMP construct
 master thread creates a team of threads,

each executing the code redundantly
 implicit “barrier” at the end (threads in

team synchronize), only master continues

 parallel may also be nested
 but with great power comes great

responsibility…
 Do not nest unless explicitly required!

Most Important Directive: parallel

parallel
region

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

22

#include <stdio.h>

int main() {
#pragma omp parallel
{
printf("Hello World\n");

}
return 0;

}

gcc hello.c –o hello -fopenmp
./hello
Hello World!
Hello World!
Hello World!

Hello World in OpenMP

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

23

 The header file omp.h provides
library functions for various aspects
 e.g. querying the number of threads

and individual thread IDs

Library Functions

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

#include <omp.h>
...
#pragma omp parallel
{
if(omp_get_thread_num() == 0) {
count << "Number of threads: "
<< omp_get_num_threads() << endl;

}

count "Hello world from thread "
<< omp_get_thread_num() << endl;

}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202124

 Using environment variables
 OMP_NUM_THREADS=4 ./program

 Using clauses
 #pragma omp parallel num_threads(4)

 Using library functions
 omp_set_num_threads(4);

 The default is implementation-
defined and often not a good choice
 Intel: Single thread
 GCC: All hardware threads in the

system (incl. hyperthreads)

 Rule of thumb:
 number of threads = number of cores

Controlling the Number of Threads

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202125

 OpenMP provides wall clock timers

 Precision can be queried using
omp_get_wtick()

 Note that timers such as clock()
return “CPU time”
 accumulated execution time across all

threads used by the program

double time_start = omp_get_wtime();
// ... do something ...
double time_end = omp_get_wtime();

double duration = time_end - time_start;

Time Measurements

Compilation and Execution

26

 compile as usual but include OpenMP-specific flag
 e.g. gcc/clang/ARM: -fopenmp, Intel: -qopenmp, IBM: -qsmp=omp

 execute as usual, but set required environment variables
 e.g. OMP_NUM_THREADS for controlling degree of parallelism

 be sure to properly set up your job submission on clusters
 e.g. parallel environments for SLURM, SGE, etc.

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202127

 Want to test your code without
OpenMP parallelization?
 simply omit the OpenMP-specific

compiler flag
 pragmas will be ignored
 greatly facilitates debugging

 only need to take care of code that
requires library functions

#ifdef _OPENMP
// code that requires OpenMP
// header/library
#endif

Detour: Sequential Debugging Made Easy

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202128

 Two types of variables
 shared: global variables, read-only

data, usually arrays, etc.
 private: local or temporary variables,

loop counters, etc.

// shared integer
int n = 10;
// shared array
vector<double> in(n);

#pragma omp parallel for
for(int i = 0; i < n; i++) {

// private double
double x = 3 * in[i];
in[i] = x;

}

Data Sharing in OpenMP

Data Sharing Clauses

29

 private
 each thread gets a private copy of variable, independent of original variable
 private copy is not initialized (C++: default constructor is called)
 default for variables declared inside parallel region and loop counters of parallel loops
 often better to declare variables inside parallel region, reduces amount of code

(also minimizes “vertical distance” in source code)

 shared
 each thread references the same, global copy
 data races if access is not synchronized
 default for variables declared outside parallel region and global variables, often used for read-only access

 default
 can be set to shared, or none for C/C++
 default(none) helpful for detecting missing variables in clauses (compiler will complain!)

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

30

Data Sharing Clauses cont’d

double x = 3;
#pragma omp parallel private(x)
{

// <- here x is NOT equal to 3
x = 5;

}
// <- here x is NOT equal to 5

int f = ...
#pragma omp parallel shared(a,b,c,f)
private(temp) default(none)

{
#pragma omp for
for(int i = 0; i < n; ++i) {
temp = b[i] * f
c[i] = a[i] + temp;

}
}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Data Sharing Clauses cont’d

31

 firstprivate
 like private, but private copies are initialized with value of copy outside of parallel region
 C++: copy constructor is called

 lastprivate
 like private, but outside copy is set to the private copy of the final iteration (for loops) or

last section (sections), NOT the iteration/section that was chronologically executed last

 threadprivate
 like private, but will persist across parallel regions
 master thread variable is storage-associated with original variable (not the case for private!)

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

 OpenMP is easy to write, but easy to
get wrong

 Most responsibility is delegated to
the application developer
 compiler will only do very basic checks

for you

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202133

 a race condition occurs when
 multiple threads can access
 the same memory location
 at the same time and
 at least one access is a write operation

 a program with a race condition is
always incorrect
 even if it manages to (sometimes)

compute correct results
 result is non-deterministic (depends on

execution order)

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions cont’d

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202134

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions cont’d

int temp = x

temp = temp + 1

x = temp

Thread 1 Thread 2

int temp = x

temp = temp + 1

x = temp

Ti
m

e

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202135

 Arrays in C are accessed via a pointer
 copying the pointer does not copy the

underlying array but only the reference to
it

 copying array pointer usually not
required
 array elements are accessed via individual

indices
 pointer itself is usually only read, even

when writing to array

// shared integer
int n = 10;
// shared array
int a[n]

#pragma omp parallel for
for(int i = 0; i < n; i++) {

a[i] += 3; // no race condition!
}

Detour: Data Sharing, Arrays and Pointers in C

Exercises

36

 Connect to the cluster and copy the exercise from to your working directory
 e.g. cp –r /home/clusterusers/sc/Day_3 ~/Day_3

 Day_3/openmp/exercises contains template source code used for the following
exercises

 Day_3/openmp/solutions contains possible implementations
 Try yourself first, otherwise you’ll miss out on the learning experience!

 Day_3/openmp.tar.gz contains today’s exercises and additional code examples

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Exercise 1

37

 Goals:
 runtime library functions
 conditional compilations
 environment variables
 parallel regions with private and shared clauses

 A sequential hello world program is provided
 exercises/hello/hello.c

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202138

 Compile the program and run as
shown on the right side

 Expected result:
 program is not parallelized so nothing

changes

gcc hello.c –o hello -fopenmp
export OMP_NUM_THREADS=4
./hello

Exercise 1a

39

 Add a parallel region that prints the
ID of each thread and the total
number of threads

 Compile and run with 4 threads

 Example output shown on the right

 Why does the order of the output
change from run to run?

OMP_NUM_THREADS=4 ./hello
I am thread 0 of 4 threads
I am thread 2 of 4 threads
I am thread 3 of 4 threads
I am thread 1 of 4 threads

Exercise 1b

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

40

 Introduce a race condition by “forgetting” to
put a private clause on the omp parallel
directive. Can you observe the race condition
 with optimization turned on (-O3) and turned off

(-O0)?
 by increasing the number of threads?
 by adding a sleep(1) just before the

printf()?

 Example output shown on the right

 Why do you observe correct results for some
configurations/runs even though there is a race
condition in the program?

OMP_NUM_THREADS=4 ./hello
I am thread 2 of 4 threads
I am thread 2 of 4 threads
I am thread 2 of 4 threads
I am thread 2 of 4 threads

Exercise 1c

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

41

 Check that the program still works if
OpenMP is turned off

 Add a statement that informs the
user that OpenMP is not used.

 Example output shown on the right

g++ hello.c -o hello
./hello
The program is not compiled
with OpenMP

Exercise 1d

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Work Sharing

43

 distribute execution of following
code region among existing threads

 must be enclosed in parallel region,
cannot be directly nested

 do not launch new threads but
assign work to existing threads

 no barrier on entry
 implicit barrier on exit
 unless nowait clause specified

 for
 sections
 single
 task
 simd

Work Sharing Directives

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

44

 loop iterations may be executed in parallel
 requires loop iterations to be independent

(dependence analysis)
 matches single program multiple data

(SPMD) paradigm
 arbitrary iteration-to-thread mapping!

 most common form of data parallelism in
OpenMP
 but OpenMP also offers task parallelism

 can also take clauses
 reduction, schedule, collapse

#pragma omp parallel
{

#pragma omp for
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

45

 for loops must have canonical form
 requires number of iterations to be known

upon loop entry
 init, test, and inc expressions must be loop

invariant
 test only allows <, <=, >, >=
 inc only allows common patterns such as
++var, var++, --var, var--, var+=step,
var-=step, …

 loop variable must not be written to in loop body

 C: iterator must be integer or pointer
 C++: must be a random access iterator
 range-based for only with OpenMP ≥ 5.0

#pragma omp parallel
{

#pragma omp for
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for Directive cont’d

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

46

 specifies method of dividing iteration space
into chunks and assigning chunks to threads

 static: equally-sized chunks, fixed round-robin
assignment
 optional: chunk size (default is “approximately

equal in size & at most one chunk per thread”)
 dynamic: equally-sized chunks assigned turn-

by-turn, at runtime
 optional: chunk size (default is 1)

 guided: like dynamic, but chunk size decreases
proportionally to no. of unassigned iterations
 optional: minimum chunk size (default is 1)

 also available: auto, runtime

#pragma omp parallel
{

#pragma omp for schedule(dynamic,2)
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for: schedule Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

47

 specifies method of dividing and assigning
chunks

 static: equally-sized chunks, fixed round-robin
assignment
 optional: chunk size (default is “approximately

equal in size & at most one chunk per thread”)
 dynamic: equally-sized chunks assigned turn-

by-turn, at runtime
 optional: chunk size (default is 1)

 guided: like dynamic, but chunk size decreases
proportionally to no. of unassigned iterations
 optional: minimum chunk size (default is 1)

 also available: auto, runtime

for: schedule Clause cont’d
T2T1 T3

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

48

 given a loop nest, the goal is usually to
parallelize and distribute the outermost loop
 minimizes management overhead

 What if the outermost loop has few iterations?
 insufficient parallelism for modern systems
 nesting parallel pragmas runs the risk of

oversubscription (exponential growth)

 collapse combines multiple iteration spaces
into a single, larger one
 allows to exploit more parallelism

#pragma omp parallel for collapse(3)
for(int i = 0; i < 3; ++i) {

for(int j = 0; j < 4; ++j) {
for(int k = 0; k < 5; ++k) {

...
}

}
}

for: collapse Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

49

 sections may be executed concurrently,
each by an arbitrary thread of the team

 matches MPMD programming patterns
 coarse-grained parallelism

 easily leads to load imbalance if
individual sections not equally work-
intensive
 also, maximum degree of parallelism

limited by number of sections

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{ ... }
#pragma omp section
{ ... }
#pragma omp section
{ ... }

}
}

sections Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

50

 code region will only be executed by a
single, arbitrary thread
 useful for interacting with libraries, that

are not multi-threading-aware

 implicit barrier at the end for all
threads in the team

 also available as master variant
 like single, but for master thread
 no implicit barrier at the end

#pragma omp parallel
{
#pragma omp single
{
...

}
}

single Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

51

 allows to work with more irregular
problems than e.g. using flat arrays
 trees, linked lists, unstructured

meshes, etc.

 can be created on-demand
 no need to know the total number of

tasks before execution (contrary to
loops)

 automatic load balancing (threads that
are idle will fetch a task to work on)

Task-based Parallelism

T1

T3T2

T4

task
dependency

task graph

52

 allows explicit specification of tasks
 careful, firstprivate is the default

 whenever a thread encounters a task
directive, a task is generated
 task may be immediately executed
 or execution may be deferred

 wait for completion using taskwait
 waits for child tasks spawned by the

current task

int fib(int n) {
int i, j;
if (n < 2)
return n;

#pragma omp task shared(i)
i = fib(n-1);

#pragma omp task shared(j)
j = fib(n-2);

#pragma omp taskwait
return i + j;

}

task Directive

53

struct Node {
struct Node *next;
struct Data *data;

};

void traverse(struct Node *p) {
if (p->next) {

#pragma omp task
traverse(p->next);

}
process(p); // do work

}

int main(int argc, char **argv) {
struct Node *head;
head = ... // produce list
#pragma omp parallel
{

#pragma omp single
{

traverse(head);
}

}
}

Example: Traversing a Linked List

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202154

#pragma omp parallel for
for(int i = 0; i < N-1; i++) {

y[i] = x[i] + x[i+1];
}

#pragma omp parallel for
for(int i = 0; i < N-1; i++) {

x[i] = y[i];
}

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < N-1; i++) {

y[i] = x[i] + x[i+1];
}

#pragma omp for
for(int i = 0; i < N-1; i++) {

x[i] = y[i];
}

}

Combining Multiple Parallel Regions

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202155

 Reductions combine multiple values
into a single one
 sum, product, max, min, etc.

 inherently cause race conditions that
need to be avoided

 critical ensures that only one
thread executes the “critical region” at
a time
 solves the race condition, but is very

expensive (requires N critical regions)

double s = 0;
#pragma omp parallel for
for(int i = 0; i < N; i++) {

double val = in[i];
#pragma omp critical
s += val;

}

Reduction

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202156

 Reduce number of critical regions
 Only requires [number of threads]

critical regions
 potentially large performance gain,

depending on N

 critical can also take multiple
statements or function calls

double s = 0; // shared
#pragma omp parallel
{
double local_s = 0; // private

#pragma omp for
for(int i = 0; i < N; i++) {
double val = in[i];
local_s += val;

}

#pragma omp critical
s += local_s;

}

Faster Reduction

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202157

 same as critical, but restricted to a
single memory location and certain
operations

 restriction allows mapping to fast
hardware mechanisms

 keeps code hardware- and compiler-
independent compared to using
intrinsics
 but may just be a wrapper for critical

e.g. when lacking hardware support

double s = 0;
#pragma omp parallel for
for(int i = 0; i < N; i++) {

double val = in[i];
#pragma omp atomic
s += val;

}

Alternative: Atomic

Exercise 2a

58

 Goal:
 for workshare construct
 critical directive

 A sequential program that computes π is provided in exercises/pi/pi.c
 add parallel region and for directive

 Expected result: Result (π) is unpredictable when used with OMP_NUM_THREADS > 1

 Find and fix the two race conditions in the code!

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Exercise 2b

59

 Run the program multiple times and compare the result

 What do you observe?

 Investigate the run time as a function of OMP_NUM_THREADS!

 How can we improve the performance?

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

More OpenMP

61

 performs reduction to a single
variable in parallel or loop context
 arithmetic ops: +, -, *, max, min
 logical ops: &, &&, |, ||, ^
 careful with associativity of floating-

point operations!

 user-defined reductions are possible
(version 4.0)
 need to be declared with
#pragma omp declare reduction

#pragma omp parallel
{

#pragma omp for reduction(+:x)
for(int i = 0; i < 10; ++i) {
x += i;

}
}

// or

#pragma omp parallel reduction(-:x)
x -= omp_get_thread_num();

reduction Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

62

 explicit barrier requested by user

 threads are not allowed to continue
until all have reached the barrier

 Implicit barrier at the end of for,
sections, single, task, simd
unless nowait specified
 explicit barrier usually not required

except for debugging

#pragma omp parallel
{
...
#pragma omp barrier
...

}

barrier Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202163

 querying/controlling environment
 omp_get_num_threads()
 omp_get_thread_num()
 omp_get_nested()
 omp_in_parallel()
 and a few others, also setters!

 timing
 omp_get_wtime()
 omp_get_wtick()

 locking
 omp_init_lock()
 omp_set_lock()
 omp_unset_lock()
 omp_test_lock()
 omp_destroy_lock()

export OMP_DISPLAY_ENV=true
./a.out

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201511'
OMP_DYNAMIC = 'FALSE'
OMP_NESTED = 'FALSE'
OMP_NUM_THREADS = '8'
OMP_SCHEDULE = 'DYNAMIC'
OMP_PROC_BIND = 'FALSE'
OMP_PLACES = ''
OMP_STACKSIZE = '0'
OMP_WAIT_POLICY = 'PASSIVE'
OMP_THREAD_LIMIT = '4294967295'
OMP_MAX_ACTIVE_LEVELS = '2147483647'
OMP_CANCELLATION = 'FALSE'
OMP_DEFAULT_DEVICE = '0'
OMP_MAX_TASK_PRIORITY = '0'

OPENMP DISPLAY ENVIRONMENT END

Library Functions and Environment Variables

Exercise 3

64

 Goal:
 Usage of the reduction clause.

 Replace the critical directive in favor of a reduction clause!

 Investigate the performance as a function of OMP_NUM_THREADS!

 Expected result: almost linear scaling

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202165

 flushes
 low-level, fine-grained synchronization

constructs

 affinity
 OS-independent control over thread-core

mapping

 vectorization
 hardware- and compiler-independent use

of SIMD instructions

 accelerator support
 use e.g. NVIDIA GPUs without writing

CUDA code

 Fortran

 debuggging
 gdb, valgrind, Intel Inspector, etc.

Additional OpenMP Features not Covered Today

Summary

66

 main characteristics
 incremental parallelization

 programming, execution and memory models
 based on threads and shared data access
 mainly relies on compiler directives as programmer interface

 directives
 parallelism, data sharing, work sharing, synchronization

 exercises

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Additional Resources

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202167

 Introduction to High Performance Computing for Scientists and Engineers, Georg
Hager and Gerhard Wellein. 2010, CRC Press.

 OpenMP, Blaise Barney, Lawrence Livermore National Laboratory.
https://computing.llnl.gov/tutorials/openMP/

 “Parallel Programming for Science and Engineering” by Victor Eijkhout,
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming
.pdf

 OpenMP homepage: http://www.openmp.org

https://computing.llnl.gov/tutorials/openMP/
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf
http://www.openmp.org/

Image Sources

68

 Helen Lovejoy: https://simpsons.fandom.com/wiki/Helen_Lovejoy

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

https://simpsons.fandom.com/wiki/Helen_Lovejoy

	1st Summer School in HPC and AI (UniBZ, June 2021)�Introduction to Shared Memory Programming with OpenMP
	Motivation: Why use Parallelism?
	Motivation: Why consider using OpenMP?
	Motivation: Incremental Parallelization
	OpenMP
	Detour: Parallelism Terminology
	OpenMP vs. MPI, Shared vs. Distributed Memory
	OpenMP’s Main Characteristics
	OpenMP’s Caveats
	OpenMP Implementations
	How to Choose between OpenMP and MPI?
	OpenMP Programming and Execution Model
	Execution Model
	Programming Model
	Programming Model cont’d
	Memory Model
	OpenMP API
	OpenMP API
	Pragmas
	Combined Pragmas
	Most Important Directive: parallel
	Hello World in OpenMP
	Library Functions
	Controlling the Number of Threads
	Time Measurements
	Compilation and Execution
	Detour: Sequential Debugging Made Easy
	Data Sharing in OpenMP
	Data Sharing Clauses
	Data Sharing Clauses cont’d
	Data Sharing Clauses cont’d
	Race Conditions
	Race Conditions cont’d
	Race Conditions cont’d
	Detour: Data Sharing, Arrays and Pointers in C
	Exercises
	Exercise 1
	Exercise 1a
	Exercise 1b
	Exercise 1c
	Exercise 1d
	Work Sharing
	Work Sharing Directives
	for Directive
	for Directive cont’d
	for: schedule Clause
	for: schedule Clause cont’d
	for: collapse Clause
	sections Directive
	single Directive
	Task-based Parallelism
	task Directive
	Example: Traversing a Linked List
	Combining Multiple Parallel Regions
	Reduction
	Faster Reduction
	Alternative: Atomic
	Exercise 2a
	Exercise 2b
	More OpenMP
	reduction Clause
	barrier Directive
	Library Functions and Environment Variables
	Exercise 3
	Additional OpenMP Features not Covered Today
	Summary
	Additional Resources
	Image Sources

