
1st Summer School in HPC and AI (UniBZ, June 2021)
Introduction & A Crash Course in Modern Hardware

Philipp Gschwandtner, Research Center HPC, University of Innsbruck
with special thanks to Lukas Einkemmer and Rolf Rabenseifner on whose original slide sets parts of this course are based



 Senior Scientist at Research Center HPC, University 
of Innsbruck (https://dps.uibk.ac.at/~philipp)
 studied computer science, focus on parallel 

programming, benchmarking and tuning
 aid researchers at UIBK in developing and optimizing 

parallel applications

 research interests in and around HPC
 measurement/optimization/modeling of performance, 

energy, efficiency, …
 APIs, programming models, runtime systems, compilers, 

...

 collaboration with other researchers and 
universities, such as UniBZ

Who is This Instructor?

Extremely professional-looking 
photo of Philipp Gschwandtner

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 20212

https://dps.uibk.ac.at/%7Ephilipp


What are we Going to Discuss Today?

 motivation
 Why do we need to know any details about hardware?
 Why use OpenMP at all?

 main characteristics
 Hardware: CPUs, caches, bottlenecks
 OpenMP: parallelism, programming model, worksharing, synchronization, 

environment, …

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 20213



What This Course is (not) Intended for

 my intentions are NOT to
 give long specifications
 show full-blown applications
 discuss a level of detail that cannot be processed in a single day

 my intentions are to
 place OpenMP in the parallel programming and HPC landscape
 outline its advantages and drawbacks
 discuss its most basic and important building blocks 

for assembling parallel applications and work on them in practical exercises
 give you enough input to be able to research additional information yourself

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 20214



Approximate Schedule
 08:45 Join online
 09:00 Welcome
 09:10 Introduction to modern hardware (talk)
 10:10 An overview of OpenMP (talk)
 10:35 Coffee
 10:50 OpenMP programming and execution model (talk+practical)
 12:30 Lunch
 13:30 OpenMP worksharing directives (talk+practical)
 15:00 Coffee
 15:15 More OpenMP (talk+practical)
 16:00 Summary + Q & A

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 20215



A Crash Course in Modern Hardware



Motivation

 Understanding hardware is important to understand performance.

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 20217



 CPU (central processing unit) 
 performs arithmetic operations, 

conditionals, loops, etc.

 Memory 
 stores data used for processing (main 

memory, caches, permanent storage, 
etc.)

Components of a Computer

Arithmetic logical unit

Cache(s)

Control Unit

Memory

CPU

Memory link

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 20218



 The CPU executes a sequence of 
instructions (referred to as machine 
code)
 Simplified example of assembly/machine 

code on the right

 Instructions can be grouped as follows
 Memory instructions (write or read from 

main memory)
 Arithmetic operations on registers
 Control instructions (comparisons, jumps)

CPU

mov 0x38AF2 r1
mov 0xA03DD r2
add r1 r2
mov r2 0x38AF2

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 20219



CPU Performance

 Performance is usually measured in floating point operations per second 
(FLOPS)
 Amount of arithmetic operations that can (theoretically) be performed per second

 A 3 GHz CPU that can perform one floating point operation per clock cycle 
equals 3 GFLOPS.

 To attain this level of performance might not be possible in practice
 Algorithm-dependent
 Implementation-dependent

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202110



 Increasing clock frequency has not 
been viable for a while
 Power dissipation scales as a square/cubic 

function of the frequency
 But transistors get smaller

 Modern CPUs look like the illustration 
on the right

 Multiple cores on the same chip
 Usually the sequential execution units are 

referred to as cores
 Modern CPUs easily hold 8-64 cores

Modern CPUs

Core

Memory

CPU

Core Core

Core Core Core

Memory link

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202111



Modern CPUs cont’d

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202112



Vectorization

 Each core can perform vector operations in a single clock cycle
 e.g. 256 bit registers: 4 double, 8 floats
 Fused multiply-add

 Vectorization is only possible if the CPU supports that specific instruction
 Ideally handled by the compiler
 OpenMP includes support for vectorization

 Types of parallelization
 Vectorization is single instruction multiple data (SIMD)
 Core-level parallelism is multiple instruction multiple data (MIMD)

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202113



 The theoretically achieved FLOPS can be 
calculated as:
 (3 GHz) * (16 cores) * (4 SIMD) * (2 fused 

multiply-add) * (2 ALUs) = 768 GFLOPS

 Let us consider multiplying a vector by a 
scalar (example on the right)
 Requires one memory read and one memory 

write per floating point operation
 Achieving 768 GFLOPS would require a 

memory transfer rate (bandwidth) of approx. 
1.5 TB/s

 State of the art hardware achieves only 50-
150 GB/s

Performance of a Modern CPU

for(int i = 0; i < n; i++) {
y[i] = 3 * x[i];

}

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202114



 A problem is compute bound if the 
performance is dictated by how many 
arithmetic operations the CPU can perform
 Numerical integration, solving dense linear 

systems (LU), Monte Carlo methods, etc.

 A problem is memory bound if the 
performance is dictated by the bandwidth of 
main memory
 Structured and unstructured grid codes, solving 

sparse linear systems, FFT, etc.
 Performance measured in achieved GB/s

 How many memory instructions on the right?

Compute Bound vs. Memory Bound

for(int i = 0; i < n-1; i++) {
y[i] = x[i+1] - x[i];

}

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202115



Memory hierarchy

 FLOPS have increased dramatically but memory speed has been lagging behind
 There is a cost, capacity, and speed trade-off involved

 The result is a memory hierarchy
 Caches on the CPU (fast, tens of megabytes)
 Main memory (medium speed, tens of gigabytes)
 Disk storage (slow, terabytes-petabytes)

 Caches are usually further divided
 Modern CPUs usually have L1, L2, L3 caches
 Caches are completely transparent to the programmer

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202116



 Knowledge of how caches work is 
important for performance
 Caches transfer data in chunks of fixed 

size (“cache lines”)
 Usually 64-256 bytes in size (8-32 

double-precision FP values)

 First read of any byte in a cache line 
transfers the entire cache line

Caches

Cache line 0 Cache line 1 Cache line 2 Cache line 3

Read

Cache hit Cache miss

Cache miss

Removed from cache

Value in cache Value not in cache

Tim
e / application progress

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202117



Memory Access Pattern

Cache line 0 Cache line 1 Cache line 2 Cache line 3

Cache miss

Cache hits

Tim
e / application progress

Cache miss (maybe)

Cache hits

// Access with stride 1
for(int i = 0; i < n; i++) {

out[i] = in[i];
}

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202118



Memory Access Pattern cont’d

Cache line 0 Cache line 1 Cache line 2 Cache line 3

Cache miss

Tim
e / application progress

// Access with stride 8
for(int j = 0; j < 8; j++) {

for(int i = 0; i < n/8; i++) {
out[j+8*i] = in[j+8*i];

}
}

Cache miss

Cache miss

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202119



Latency

 Latency – how long the CPU has to wait between issuing a memory request and 
receiving the first byte – is an important performance consideration
 There are physical limitations when reducing latency

 Modern CPUs employ a range of techniques to hide latency
 Prefetching

 Tries to load data likely used next into the cache
 Before the actual memory instruction is issued
 Particularly efficient for problems where memory locations close together are accessed in sequence

 Instruction-Level Parallelism (ILP)
 out-of-order execution: tries to delay instructions that still wait for memory
 speculative execution: execute conditional code before checking the condition and verify afterwards

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202120



 Many systems are dual or quad socket 
now

 All cores can access the entire memory 
but speed might differ depending on 
which memory modules are accessed.
 Non uniform memory accesses (NUMA)
 Cores are grouped into NUMA domains

 Determine NUMA domains: 
numactl --hardware

NUMA Domains

Core

Memory

CPU (Socket 0)

Core Core

Core Core Core

Memory link

Core

Memory

CPU (Socket 1)

Core Core

Core Core Core

Memory link

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202121



First Touch

 For best performance, memory has to be placed “close” to where it is used
 Neither C++ nor OpenMP provides a direct way to do that
 This might not necessarily be desirable anyhow

 First touch principle
 A memory location is mapped close to the core that first touches (reads or writes) it.
 Parallelizing the initialization of data can make subsequent computation faster

 Different parts of an array can be placed on different NUMA domains

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202122



 Modern CPUs are complicated
 A basic understanding is vital but often 

measurement is necessary

 Rule of thumb penalties (in clock 
cycles) shown on the right
 Exact numbers depend on specific 

hardware architecture

Operation Cost in Cycles

arithmetics 1-5

L1 hit 1-10

function call 10-20

L3 hit 40

sin/cos 100

memory 200

disk 105

A Note on Optimization

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202123



Further Reading

 Ulrich Drepper: What every programmer should know about memory
 https://lwn.net/Articles/250967/?rss=1

 Colin Scott: Latency Numbers Every Programmer Should Know
 https://colin-scott.github.io/personal_website/research/interactive_latency.html

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202124

https://lwn.net/Articles/250967/?rss=1
https://colin-scott.github.io/personal_website/research/interactive_latency.html


Additional Topics not Covered Today

 Hyperthreading
 It does NOT duplicate your cores

 Vectorization
 SSE/AVX/SVE/VSX/…

 Distributed memory
 Network technologies and topologies

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202125



Summary

 Understanding hardware is important to understand performance.

 Parallelism is required for high performance and must be explicitly used by the 
application developer.

 Know your bottlenecks!
 compute bound, memory bound, cache optimality, etc.
 Always employ data-driven optimization!

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202126



Image Sources
 Portrait photo: © Andreas Friedle

 48 Years of Microprocessor Trend Data: https://zenodo.org/record/3947824

Introduction & Hardware Crash Course - Philipp Gschwandtner, UniBZ, June 202127

https://zenodo.org/record/3947824

	1st Summer School in HPC and AI (UniBZ, June 2021)�Introduction & A Crash Course in Modern Hardware
	Who is This Instructor?
	What are we Going to Discuss Today?
	What This Course is (not) Intended for
	Approximate Schedule
	A Crash Course in Modern Hardware
	Motivation
	Components of a Computer
	CPU
	CPU Performance
	Modern CPUs
	Modern CPUs cont’d
	Vectorization
	Performance of a Modern CPU
	Compute Bound vs. Memory Bound
	Memory hierarchy
	Caches
	Memory Access Pattern
	Memory Access Pattern cont’d
	Latency
	NUMA Domains
	First Touch
	A Note on Optimization
	Further Reading
	Additional Topics not Covered Today
	Summary
	Image Sources

