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 Modern supercomputers are built by 
connecting a large number of 
individual compute nodes

 Each node can have multiple CPUs 
and cores
 illustration on the right is simplified

 Parallelization is essential to exploit 
modern hardware!

Motivation: Why use Parallelism?

Memory Memory

Memory Memory

Network
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Motivation: Why consider using OpenMP?
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 OpenMP is one of the easiest parallel programming models & widely available
 however, restricted to shared memory hardware (=no network)
 there are alternatives, e.g. Intel TBB, but none as widely spread and/or mature

 modern hardware encourages use of such models
 AMD x86 desktop: Threadripper 3990X with 64 cores and 128 threads
 Intel x86 server: 8x Xeon Platinum 827x or 828x with 28 cores / 56 threads = 224/448
 Marvell ARM: ThunderX3: 96 cores and 384 threads
 exotic hardware: SGI Altix UV (“Mach 2” @ JKU in Linz, Austria) with 4096/8192
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 MPI
 initially a sequential program
 start to parallelize
 program won’t work until major parts 

of parallelization present

 OpenMP
 initially a sequential program
 parallelize incrementally
 program remains functional 

throughput parallelization process

Motivation: Incremental Parallelization
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pe
rf

or
m

an
ce

sequential
program

OpenMP

MPI

non-functional
program

start of 
parallelization
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OpenMP
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 thread-based programming model for shared memory parallelism
 provides a higher level of abstraction compared to pthreads, C++ STL threads, etc.
 e.g. “run this loop in parallel” vs. “execute this list of statements asynchronously”

 de-facto standard for C/C++ and Fortran

 maintained by the OpenMP Architecture Review Board
 initial release in 1997 (version 1.0 for Fortran)
 updates in 1998 (1.0 for C/C++), 2000 (2.0), 2005 (2.5), 2008 (3.0), 2011 (3.1), 

2013 (4.0), 2018 (5.0), 2020 (5.1)
 this slide set assumes at least OpenMP 3.1!
 https://www.openmp.org/specifications/
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 Thread
 is a set of sequential instructions that are 

executed in order
 is a software construct
 often mapped to a single core

 Core
 is a set of hardware components that 

process instructions of a thread
 is a hardware construct
 sometimes, cores are partially split into 

hardware threads (e.g. HyperThreading)

 Shared memory
 assumes all threads have direct read 

and write access to the same memory

 Distributed memory
 not all threads have direct read/write 

access
 data transfers via network are required

Detour: Parallelism Terminology
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 shared memory
 single memory address space
 usually based on threads
 all data can be accessed directly
 synchronization (e.g. barriers) required 

to ensure correctness

lock();
x[0] += 42;
unlock();

 distributed memory
 multiple memory address spaces
 usually based on processes
 data cannot be accessed directly
 message exchange required to get data 

and ensure synchronization

x = recv_data(…);
x[0] += 42;
send_data(x, …);

OpenMP vs. MPI, Shared vs. Distributed Memory
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 compiler-based parallelization model
 tell the compiler what should happen and when/where
 compiler and runtime system do the rest of the job for 

you

 portable across many hardware architectures / 
platforms

 runtime system responsible for managing threads, 
scheduling, affinity, etc.

 C/C++ and Fortran bindings
 even a research compiler for Java is available…

 aims at minimal changes to sequential code

#pragma omp parallel for
for(int i = 0; i < N; i++) {

out[i] = in[i];
}

OpenMP’s Main Characteristics



OpenMP’s Caveats
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 compiler-based parallelization model
 tell compiler what code to run in parallel and when to synchronize
 tell compiler whether to share data among threads or create private copies
 but compiler cannot/will not check semantic correctness

 Won’t somebody please think of the compiler developers?

 only works in shared memory

 no guaranteed performance portability
 it will run on any hardware, but maybe not as fast

Helen Lovejoy

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



OpenMP Implementations
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 many implementations available
 GCC, LLVM, Intel, Microsoft, etc.
 allow to run OpenMP virtually on every platform
 compiler and runtime support required

 sometimes interchangeable components
 check https://www.openmp.org/resources/openmp-compilers-tools/ for compiler support

 do not confuse implementation adherence with specification adherence
 many minor semantics in OpenMP are implementation-defined
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How to Choose between OpenMP and MPI?
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 all considerations on the last two slides, plus:
 OpenMP is a language extension, hence requires compiler support
 MPI is a library, hence compiler-independent

 often used together, referred to as “hybrid” parallelism, e.g.
 one MPI process per shared memory node, CPU, or NUMA domain
 multiple OpenMP threads per MPI process for the individual cores / hardware threads

 Choose your weapon wisely!
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 fork-join parallelism
 program starts sequentially
 parallel regions can be opened, which 

spawn new threads
 end of parallel regions synchronize threads
 afterwards, execution continues 

sequentially

 There is no guarantee in which order 
the threads are executed
 specific order can be enforced, but this is 

very expensive and usually not desired

Execution Model

master 
thread

team of 
threads

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



14

 mark code regions with directives or pragmas
(version 5.1: also C++ attributes), e.g.
 parallel regions
 work to be distributed
 thread synchronization

 add clauses for further information, e.g.
 which variables to share, which not to
 scheduling strategies

 any valid OpenMP program must be a valid 
sequential program if all pragmas are removed!
 easy to do: remove OpenMP compiler flag
 facilitates debugging

int f = ... 
#pragma omp parallel shared(a,b,c,f) 
default(none)

{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Programming Model
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int f = ... 
#pragma omp parallel shared(a,b,c,f) 
default(none)

{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Programming Model cont’d

0 1 2 3 4 5 6 7

parallel 
region work-

shared 
loop
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 OpenMP is based on threads
 all threads have access to global, 

shared data
 each thread has additional local, 

private data
 modifications to private data are not 

visible across threads
 modifications to shared data are visible 

across threads and need to be done 
carefully

Memory Model

shared memory

private memory
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OpenMP API
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 pragmas (also “directives”)
 control constructs

 parallelism & work sharing

 data sharing
 private & shared variables, initialization

 synchronization
 critical & atomic sections, barriers

 library functions
 querying/controlling runtime system
 timing
 locking

 environment variables
 degree and nesting of parallelism
 loop scheduling
 thread mapping and binding

OpenMP API
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 #pragma omp directive [ clause
[, clause ] ] (newline)

 pragmas must be on their own source code line 
and end with a newline

 OpenMP directives can often take a number of 
optional clauses, possibly with parameters

 pragmas have dynamic and lexical extent
 e.g. #pragma omp for must always be nested in 

#pragma omp parallel
 but not necessarily statically 

(see example on the right)

void bar() {
#pragma omp for
for(...) { ... }

}

void foo() {
#pragma omp parallel
bar();

}

Pragmas
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Combined Pragmas

#pragma omp parallel for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 #pragma omp parallel
 must be followed by a statement or 

another OpenMP construct
 master thread creates a team of threads, 

each executing the code redundantly
 implicit “barrier” at the end (threads in 

team synchronize), only master continues

 parallel may also be nested
 but with great power comes great 

responsibility…
 Do not nest unless explicitly required!

Most Important Directive: parallel

parallel 
region
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#include <stdio.h>

int main() {
#pragma omp parallel
{
printf("Hello World\n");

}
return 0;

}

gcc hello.c –o hello -fopenmp
./hello
Hello World!
Hello World!
Hello World!

Hello World in OpenMP

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



23

 The header file omp.h provides 
library functions for various aspects
 e.g. querying the number of threads 

and individual thread IDs

Library Functions
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#include <omp.h>
...
#pragma omp parallel
{
if(omp_get_thread_num() == 0) {
count << "Number of threads: "
<< omp_get_num_threads() << endl;

}

count "Hello world from thread "
<< omp_get_thread_num() << endl;

}
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 Using environment variables
 OMP_NUM_THREADS=4 ./program

 Using clauses
 #pragma omp parallel num_threads(4)

 Using library functions
 omp_set_num_threads(4);

 The default is implementation-
defined and often not a good choice
 Intel: Single thread
 GCC: All hardware threads in the 

system (incl. hyperthreads)

 Rule of thumb:
 number of threads = number of cores

Controlling the Number of Threads
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 OpenMP provides wall clock timers

 Precision can be queried using 
omp_get_wtick()

 Note that timers such as clock()
return “CPU time”
 accumulated execution time across all 

threads used by the program

double time_start = omp_get_wtime();
// ... do something ...
double time_end = omp_get_wtime();

double duration = time_end - time_start;

Time Measurements



Compilation and Execution
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 compile as usual but include OpenMP-specific flag
 e.g. gcc/clang/ARM: -fopenmp, Intel: -qopenmp, IBM: -qsmp=omp

 execute as usual, but set required environment variables
 e.g. OMP_NUM_THREADS for controlling degree of parallelism

 be sure to properly set up your job submission on clusters
 e.g. parallel environments for SLURM, SGE, etc.

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 Want to test your code without 
OpenMP parallelization?
 simply omit the OpenMP-specific 

compiler flag
 pragmas will be ignored
 greatly facilitates debugging

 only need to take care of code that 
requires library functions

#ifdef _OPENMP
// code that requires OpenMP
// header/library
#endif

Detour: Sequential Debugging Made Easy
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 Two types of variables
 shared: global variables, read-only 

data, usually arrays, etc.
 private: local or temporary variables, 

loop counters, etc.

// shared integer
int n = 10;
// shared array
vector<double> in(n);

#pragma omp parallel for
for(int i = 0; i < n; i++) {

// private double
double x = 3 * in[i];
in[i] = x;

}

Data Sharing in OpenMP



Data Sharing Clauses
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 private
 each thread gets a private copy of variable, independent of original variable
 private copy is not initialized (C++: default constructor is called)
 default for variables declared inside parallel region and loop counters of parallel loops
 often better to declare variables inside parallel region, reduces amount of code 

(also minimizes “vertical distance” in source code)

 shared
 each thread references the same, global copy
 data races if access is not synchronized
 default for variables declared outside parallel region and global variables, often used for read-only access

 default
 can be set to shared, or none for C/C++
 default(none) helpful for detecting missing variables in clauses (compiler will complain!)

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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Data Sharing Clauses cont’d

double x = 3;
#pragma omp parallel private(x)
{

// <- here x is NOT equal to 3
x = 5;

}
// <- here x is NOT equal to 5

int f = ... 
#pragma omp parallel shared(a,b,c,f) 
private(temp) default(none)

{
#pragma omp for
for(int i = 0; i < n; ++i) {
temp = b[i] * f
c[i] = a[i] + temp;

}
}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



Data Sharing Clauses cont’d
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 firstprivate
 like private, but private copies are initialized with value of copy outside of parallel region
 C++: copy constructor is called

 lastprivate
 like private, but outside copy is set to the private copy of the final iteration (for loops) or 

last section (sections), NOT the iteration/section that was chronologically executed last

 threadprivate
 like private, but will persist across parallel regions
 master thread variable is storage-associated with original variable (not the case for private!)

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



 OpenMP is easy to write, but easy to 
get wrong

 Most responsibility is delegated to 
the application developer
 compiler will only do very basic checks 

for you

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions
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 a race condition occurs when
 multiple threads can access 
 the same memory location
 at the same time and 
 at least one access is a write operation

 a program with a race condition is 
always incorrect
 even if it manages to (sometimes) 

compute correct results
 result is non-deterministic (depends on 

execution order)

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions cont’d
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int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions cont’d

int temp = x

temp = temp + 1

x = temp

Thread 1 Thread 2

int temp = x

temp = temp + 1

x = temp

Ti
m

e
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 Arrays in C are accessed via a pointer
 copying the pointer does not copy the 

underlying array but only the reference to 
it

 copying array pointer usually not 
required
 array elements are accessed via individual 

indices
 pointer itself is usually only read, even 

when writing to array

// shared integer
int n = 10;
// shared array
int a[n]

#pragma omp parallel for
for(int i = 0; i < n; i++) {

a[i] += 3; // no race condition!
}

Detour: Data Sharing, Arrays and Pointers in C



Exercises
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 Connect to the cluster and copy the exercise from to your working directory
 e.g. cp –r /home/clusterusers/sc/Day_3 ~/Day_3

 Day_3/openmp/exercises contains template source code used for the following 
exercises

 Day_3/openmp/solutions contains possible implementations
 Try yourself first, otherwise you’ll miss out on the learning experience!

 Day_3/openmp.tar.gz contains today’s exercises and additional code examples

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



Exercise 1
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 Goals:
 runtime library functions
 conditional compilations
 environment variables
 parallel regions with private and shared clauses

 A sequential hello world program is provided
 exercises/hello/hello.c

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 Compile the program and run as 
shown on the right side

 Expected result:
 program is not parallelized so nothing 

changes

gcc hello.c –o hello -fopenmp
export OMP_NUM_THREADS=4
./hello

Exercise 1a



39

 Add a parallel region that prints the 
ID of each thread and the total 
number of threads

 Compile and run with 4 threads

 Example output shown on the right

 Why does the order of the output 
change from run to run?

OMP_NUM_THREADS=4 ./hello
I am thread 0 of 4 threads
I am thread 2 of 4 threads
I am thread 3 of 4 threads
I am thread 1 of 4 threads

Exercise 1b

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 Introduce a race condition by “forgetting” to 
put a private clause on the omp parallel 
directive. Can you observe the race condition
 with optimization turned on (-O3) and turned off 

(-O0)?
 by increasing the number of threads?
 by adding a sleep(1) just before the 

printf()?

 Example output shown on the right

 Why do you observe correct results for some 
configurations/runs even though there is a race 
condition in the program?

OMP_NUM_THREADS=4 ./hello
I am thread 2 of 4 threads
I am thread 2 of 4 threads
I am thread 2 of 4 threads
I am thread 2 of 4 threads

Exercise 1c

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 Check that the program still works if 
OpenMP is turned off

 Add a statement that informs the 
user that OpenMP is not used.

 Example output shown on the right

g++ hello.c -o hello
./hello
The program is not compiled
with OpenMP

Exercise 1d
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Work Sharing
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 distribute execution of following 
code region among existing threads

 must be enclosed in parallel region, 
cannot be directly nested

 do not launch new threads but 
assign work to existing threads

 no barrier on entry
 implicit barrier on exit
 unless nowait clause specified

 for
 sections
 single
 task
 simd

Work Sharing Directives

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 loop iterations may be executed in parallel
 requires loop iterations to be independent 

(dependence analysis)
 matches single program multiple data 

(SPMD) paradigm
 arbitrary iteration-to-thread mapping!

 most common form of data parallelism in 
OpenMP
 but OpenMP also offers task parallelism

 can also take clauses
 reduction, schedule, collapse

#pragma omp parallel
{

#pragma omp for
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



45

 for loops must have canonical form
 requires number of iterations to be known 

upon loop entry
 init, test, and inc expressions must be loop 

invariant
 test only allows <, <=, >, >=
 inc only allows common patterns such as 
++var, var++, --var, var--, var+=step, 
var-=step, …

 loop variable must not be written to in loop body

 C: iterator must be integer or pointer
 C++: must be a random access iterator
 range-based for only with OpenMP ≥ 5.0

#pragma omp parallel
{

#pragma omp for
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for Directive cont’d

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 specifies method of dividing iteration space 
into chunks and assigning chunks to threads

 static: equally-sized chunks, fixed round-robin 
assignment
 optional: chunk size (default is “approximately 

equal in size & at most one chunk per thread”)
 dynamic: equally-sized chunks assigned turn-

by-turn, at runtime
 optional: chunk size (default is 1)

 guided: like dynamic, but chunk size decreases 
proportionally to no. of unassigned iterations
 optional: minimum chunk size (default is 1)

 also available: auto, runtime

#pragma omp parallel
{

#pragma omp for schedule(dynamic,2)
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for: schedule Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021



47

 specifies method of dividing and assigning 
chunks

 static: equally-sized chunks, fixed round-robin 
assignment
 optional: chunk size (default is “approximately 

equal in size & at most one chunk per thread”)
 dynamic: equally-sized chunks assigned turn-

by-turn, at runtime
 optional: chunk size (default is 1)

 guided: like dynamic, but chunk size decreases 
proportionally to no. of unassigned iterations
 optional: minimum chunk size (default is 1)

 also available: auto, runtime

for: schedule Clause cont’d
T2T1 T3
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 given a loop nest, the goal is usually to 
parallelize and distribute the outermost loop
 minimizes management overhead

 What if the outermost loop has few iterations?
 insufficient parallelism for modern systems
 nesting parallel pragmas runs the risk of 

oversubscription (exponential growth)

 collapse combines multiple iteration spaces 
into a single, larger one
 allows to exploit more parallelism

#pragma omp parallel for collapse(3)
for(int i = 0; i < 3; ++i) {

for(int j = 0; j < 4; ++j) {
for(int k = 0; k < 5; ++k) {

...
}

}
}

for: collapse Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 sections may be executed concurrently, 
each by an arbitrary thread of the team

 matches MPMD programming patterns
 coarse-grained parallelism

 easily leads to load imbalance if 
individual sections not equally work-
intensive
 also, maximum degree of parallelism 

limited by number of sections

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{ ... }
#pragma omp section
{ ... }
#pragma omp section
{ ... }

}
}

sections Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021
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 code region will only be executed by a 
single, arbitrary thread
 useful for interacting with libraries, that 

are not multi-threading-aware

 implicit barrier at the end for all 
threads in the team

 also available as master variant
 like single, but for master thread
 no implicit barrier at the end

#pragma omp parallel
{
#pragma omp single
{
...

}
}

single Directive
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 allows to work with more irregular 
problems than e.g. using flat arrays
 trees, linked lists, unstructured 

meshes, etc.

 can be created on-demand
 no need to know the total number of 

tasks before execution (contrary to 
loops)

 automatic load balancing (threads that 
are idle will fetch a task to work on)

Task-based Parallelism

T1

T3T2

T4

task
dependency

task graph



52

 allows explicit specification of tasks
 careful, firstprivate is the default

 whenever a thread encounters a task
directive, a task is generated
 task may be immediately executed
 or execution may be deferred

 wait for completion using taskwait
 waits for child tasks spawned by the 

current task

int fib(int n) {
int i, j;
if (n < 2)
return n;

#pragma omp task shared(i)
i = fib(n-1);

#pragma omp task shared(j)
j = fib(n-2);

#pragma omp taskwait
return i + j;

}

task Directive
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struct Node {
struct Node *next;
struct Data *data;

};

void traverse(struct Node *p) {
if (p->next) {

#pragma omp task
traverse(p->next);

}
process(p); // do work

}

int main(int argc, char **argv) {
struct Node *head;
head = ... // produce list
#pragma omp parallel
{

#pragma omp single
{

traverse(head);
}

}
}

Example: Traversing a Linked List
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#pragma omp parallel for
for(int i = 0; i < N-1; i++) {

y[i] = x[i] + x[i+1];
}

#pragma omp parallel for
for(int i = 0; i < N-1; i++) {

x[i] = y[i];
}

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < N-1; i++) {

y[i] = x[i] + x[i+1];
}

#pragma omp for
for(int i = 0; i < N-1; i++) {

x[i] = y[i];
}

}

Combining Multiple Parallel Regions
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 Reductions combine multiple values 
into a single one
 sum, product, max, min, etc.

 inherently cause race conditions that 
need to be avoided

 critical ensures that only one 
thread executes the “critical region” at 
a time
 solves the race condition, but is very 

expensive (requires N critical regions)

double s = 0;
#pragma omp parallel for
for(int i = 0; i < N; i++) {

double val = in[i];
#pragma omp critical
s += val;

}

Reduction
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 Reduce number of critical regions
 Only requires [number of threads] 

critical regions
 potentially large performance gain, 

depending on N

 critical can also take multiple 
statements or function calls

double s = 0; // shared
#pragma omp parallel
{
double local_s = 0; // private

#pragma omp for
for(int i = 0; i < N; i++) {
double val = in[i];
local_s += val;

}

#pragma omp critical
s += local_s;

}

Faster Reduction
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 same as critical, but restricted to a 
single memory location and certain 
operations

 restriction allows mapping to fast 
hardware mechanisms

 keeps code hardware- and compiler-
independent compared to using 
intrinsics
 but may just be a wrapper for critical

e.g. when lacking hardware support

double s = 0;
#pragma omp parallel for
for(int i = 0; i < N; i++) {

double val = in[i];
#pragma omp atomic
s += val;

}

Alternative: Atomic



Exercise 2a
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 Goal:
 for workshare construct
 critical directive

 A sequential program that computes π is provided in exercises/pi/pi.c
 add parallel region and for directive

 Expected result: Result (π) is unpredictable when used with OMP_NUM_THREADS > 1

 Find and fix the two race conditions in the code!
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Exercise 2b
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 Run the program multiple times and compare the result

 What do you observe?

 Investigate the run time as a function of OMP_NUM_THREADS!

 How can we improve the performance?
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 performs reduction to a single 
variable in parallel or loop context
 arithmetic ops: +, -, *, max, min
 logical ops: &, &&, |, ||, ^
 careful with associativity of floating-

point operations!

 user-defined reductions are possible 
(version 4.0)
 need to be declared with 
#pragma omp declare reduction

#pragma omp parallel
{

#pragma omp for reduction(+:x)
for(int i = 0; i < 10; ++i) {
x += i;

}
}

// or

#pragma omp parallel reduction(-:x)
x -= omp_get_thread_num();

reduction Clause
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 explicit barrier requested by user

 threads are not allowed to continue 
until all have reached the barrier

 Implicit barrier at the end of for, 
sections, single, task, simd
unless nowait specified
 explicit barrier usually not required 

except for debugging

#pragma omp parallel
{
...
#pragma omp barrier
...

}

barrier Directive
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 querying/controlling environment
 omp_get_num_threads()
 omp_get_thread_num()
 omp_get_nested()
 omp_in_parallel()
 and a few others, also setters!

 timing
 omp_get_wtime()
 omp_get_wtick()

 locking
 omp_init_lock()
 omp_set_lock()
 omp_unset_lock()
 omp_test_lock()
 omp_destroy_lock()

export OMP_DISPLAY_ENV=true
./a.out

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201511'
OMP_DYNAMIC = 'FALSE'
OMP_NESTED = 'FALSE'
OMP_NUM_THREADS = '8'
OMP_SCHEDULE = 'DYNAMIC'
OMP_PROC_BIND = 'FALSE'
OMP_PLACES = ''
OMP_STACKSIZE = '0'
OMP_WAIT_POLICY = 'PASSIVE'
OMP_THREAD_LIMIT = '4294967295'
OMP_MAX_ACTIVE_LEVELS = '2147483647'
OMP_CANCELLATION = 'FALSE'
OMP_DEFAULT_DEVICE = '0'
OMP_MAX_TASK_PRIORITY = '0'

OPENMP DISPLAY ENVIRONMENT END

Library Functions and Environment Variables



Exercise 3
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 Goal:
 Usage of the reduction clause.

 Replace the critical directive in favor of a reduction clause!

 Investigate the performance as a function of OMP_NUM_THREADS!

 Expected result: almost linear scaling
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 flushes
 low-level, fine-grained synchronization 

constructs

 affinity
 OS-independent control over thread-core 

mapping

 vectorization
 hardware- and compiler-independent use 

of SIMD instructions

 accelerator support
 use e.g. NVIDIA GPUs without writing 

CUDA code

 Fortran

 debuggging
 gdb, valgrind, Intel Inspector, etc.

Additional OpenMP Features not Covered Today



Summary
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 main characteristics
 incremental parallelization

 programming, execution and memory models
 based on threads and shared data access
 mainly relies on compiler directives as programmer interface

 directives
 parallelism, data sharing, work sharing, synchronization

 exercises
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Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202167

 Introduction to High Performance Computing for Scientists and Engineers, Georg 
Hager and Gerhard Wellein. 2010, CRC Press.

 OpenMP, Blaise Barney, Lawrence Livermore National Laboratory.
https://computing.llnl.gov/tutorials/openMP/

 “Parallel Programming for Science and Engineering” by Victor Eijkhout, 
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming
.pdf

 OpenMP homepage: http://www.openmp.org

https://computing.llnl.gov/tutorials/openMP/
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf
http://www.openmp.org/


Image Sources
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 Helen Lovejoy: https://simpsons.fandom.com/wiki/Helen_Lovejoy
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https://simpsons.fandom.com/wiki/Helen_Lovejoy
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