
1st Summer School in HPC and AI (UniBZ, June 2021)
Introduction to Shared Memory Programming with OpenMP

Philipp Gschwandtner, Research Center HPC, University of Innsbruck
with special thanks to Lukas Einkemmer and Rolf Rabenseifner on whose original slide sets parts of this course are based

2

 Modern supercomputers are built by
connecting a large number of
individual compute nodes

 Each node can have multiple CPUs
and cores
 illustration on the right is simplified

 Parallelization is essential to exploit
modern hardware!

Motivation: Why use Parallelism?

Memory Memory

Memory Memory

Network

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Motivation: Why consider using OpenMP?

3

 OpenMP is one of the easiest parallel programming models & widely available
 however, restricted to shared memory hardware (=no network)
 there are alternatives, e.g. Intel TBB, but none as widely spread and/or mature

 modern hardware encourages use of such models
 AMD x86 desktop: Threadripper 3990X with 64 cores and 128 threads
 Intel x86 server: 8x Xeon Platinum 827x or 828x with 28 cores / 56 threads = 224/448
 Marvell ARM: ThunderX3: 96 cores and 384 threads
 exotic hardware: SGI Altix UV (“Mach 2” @ JKU in Linz, Austria) with 4096/8192

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

4

 MPI
 initially a sequential program
 start to parallelize
 program won’t work until major parts

of parallelization present

 OpenMP
 initially a sequential program
 parallelize incrementally
 program remains functional

throughput parallelization process

Motivation: Incremental Parallelization

time and effort

pe
rf

or
m

an
ce

sequential
program

OpenMP

MPI

non-functional
program

start of
parallelization

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP

5

 thread-based programming model for shared memory parallelism
 provides a higher level of abstraction compared to pthreads, C++ STL threads, etc.
 e.g. “run this loop in parallel” vs. “execute this list of statements asynchronously”

 de-facto standard for C/C++ and Fortran

 maintained by the OpenMP Architecture Review Board
 initial release in 1997 (version 1.0 for Fortran)
 updates in 1998 (1.0 for C/C++), 2000 (2.0), 2005 (2.5), 2008 (3.0), 2011 (3.1),

2013 (4.0), 2018 (5.0), 2020 (5.1)
 this slide set assumes at least OpenMP 3.1!
 https://www.openmp.org/specifications/

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

https://www.openmp.org/specifications/

6

 Thread
 is a set of sequential instructions that are

executed in order
 is a software construct
 often mapped to a single core

 Core
 is a set of hardware components that

process instructions of a thread
 is a hardware construct
 sometimes, cores are partially split into

hardware threads (e.g. HyperThreading)

 Shared memory
 assumes all threads have direct read

and write access to the same memory

 Distributed memory
 not all threads have direct read/write

access
 data transfers via network are required

Detour: Parallelism Terminology

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

7

 shared memory
 single memory address space
 usually based on threads
 all data can be accessed directly
 synchronization (e.g. barriers) required

to ensure correctness

lock();
x[0] += 42;
unlock();

 distributed memory
 multiple memory address spaces
 usually based on processes
 data cannot be accessed directly
 message exchange required to get data

and ensure synchronization

x = recv_data(…);
x[0] += 42;
send_data(x, …);

OpenMP vs. MPI, Shared vs. Distributed Memory

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 20218

 compiler-based parallelization model
 tell the compiler what should happen and when/where
 compiler and runtime system do the rest of the job for

you

 portable across many hardware architectures /
platforms

 runtime system responsible for managing threads,
scheduling, affinity, etc.

 C/C++ and Fortran bindings
 even a research compiler for Java is available…

 aims at minimal changes to sequential code

#pragma omp parallel for
for(int i = 0; i < N; i++) {

out[i] = in[i];
}

OpenMP’s Main Characteristics

OpenMP’s Caveats

9

 compiler-based parallelization model
 tell compiler what code to run in parallel and when to synchronize
 tell compiler whether to share data among threads or create private copies
 but compiler cannot/will not check semantic correctness

 Won’t somebody please think of the compiler developers?

 only works in shared memory

 no guaranteed performance portability
 it will run on any hardware, but maybe not as fast

Helen Lovejoy

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP Implementations

10

 many implementations available
 GCC, LLVM, Intel, Microsoft, etc.
 allow to run OpenMP virtually on every platform
 compiler and runtime support required

 sometimes interchangeable components
 check https://www.openmp.org/resources/openmp-compilers-tools/ for compiler support

 do not confuse implementation adherence with specification adherence
 many minor semantics in OpenMP are implementation-defined

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

https://www.openmp.org/resources/openmp-compilers-tools/

How to Choose between OpenMP and MPI?

11

 all considerations on the last two slides, plus:
 OpenMP is a language extension, hence requires compiler support
 MPI is a library, hence compiler-independent

 often used together, referred to as “hybrid” parallelism, e.g.
 one MPI process per shared memory node, CPU, or NUMA domain
 multiple OpenMP threads per MPI process for the individual cores / hardware threads

 Choose your weapon wisely!

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP Programming and Execution Model

13

 fork-join parallelism
 program starts sequentially
 parallel regions can be opened, which

spawn new threads
 end of parallel regions synchronize threads
 afterwards, execution continues

sequentially

 There is no guarantee in which order
the threads are executed
 specific order can be enforced, but this is

very expensive and usually not desired

Execution Model

master
thread

team of
threads

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

14

 mark code regions with directives or pragmas
(version 5.1: also C++ attributes), e.g.
 parallel regions
 work to be distributed
 thread synchronization

 add clauses for further information, e.g.
 which variables to share, which not to
 scheduling strategies

 any valid OpenMP program must be a valid
sequential program if all pragmas are removed!
 easy to do: remove OpenMP compiler flag
 facilitates debugging

int f = ...
#pragma omp parallel shared(a,b,c,f)
default(none)

{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Programming Model

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

15

int f = ...
#pragma omp parallel shared(a,b,c,f)
default(none)

{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Programming Model cont’d

0 1 2 3 4 5 6 7

parallel
region work-

shared
loop

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

16

 OpenMP is based on threads
 all threads have access to global,

shared data
 each thread has additional local,

private data
 modifications to private data are not

visible across threads
 modifications to shared data are visible

across threads and need to be done
carefully

Memory Model

shared memory

private memory

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

OpenMP API

18

 pragmas (also “directives”)
 control constructs

 parallelism & work sharing

 data sharing
 private & shared variables, initialization

 synchronization
 critical & atomic sections, barriers

 library functions
 querying/controlling runtime system
 timing
 locking

 environment variables
 degree and nesting of parallelism
 loop scheduling
 thread mapping and binding

OpenMP API

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

19

 #pragma omp directive [clause
[, clause]] (newline)

 pragmas must be on their own source code line
and end with a newline

 OpenMP directives can often take a number of
optional clauses, possibly with parameters

 pragmas have dynamic and lexical extent
 e.g. #pragma omp for must always be nested in

#pragma omp parallel
 but not necessarily statically

(see example on the right)

void bar() {
#pragma omp for
for(...) { ... }

}

void foo() {
#pragma omp parallel
bar();

}

Pragmas

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

20

Combined Pragmas

#pragma omp parallel for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < 8; ++i) {
c[i] = a[i] + b[i] * f;

}
}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

21

 #pragma omp parallel
 must be followed by a statement or

another OpenMP construct
 master thread creates a team of threads,

each executing the code redundantly
 implicit “barrier” at the end (threads in

team synchronize), only master continues

 parallel may also be nested
 but with great power comes great

responsibility…
 Do not nest unless explicitly required!

Most Important Directive: parallel

parallel
region

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

22

#include <stdio.h>

int main() {
#pragma omp parallel
{
printf("Hello World\n");

}
return 0;

}

gcc hello.c –o hello -fopenmp
./hello
Hello World!
Hello World!
Hello World!

Hello World in OpenMP

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

23

 The header file omp.h provides
library functions for various aspects
 e.g. querying the number of threads

and individual thread IDs

Library Functions

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

#include <omp.h>
...
#pragma omp parallel
{
if(omp_get_thread_num() == 0) {
count << "Number of threads: "
<< omp_get_num_threads() << endl;

}

count "Hello world from thread "
<< omp_get_thread_num() << endl;

}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202124

 Using environment variables
 OMP_NUM_THREADS=4 ./program

 Using clauses
 #pragma omp parallel num_threads(4)

 Using library functions
 omp_set_num_threads(4);

 The default is implementation-
defined and often not a good choice
 Intel: Single thread
 GCC: All hardware threads in the

system (incl. hyperthreads)

 Rule of thumb:
 number of threads = number of cores

Controlling the Number of Threads

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202125

 OpenMP provides wall clock timers

 Precision can be queried using
omp_get_wtick()

 Note that timers such as clock()
return “CPU time”
 accumulated execution time across all

threads used by the program

double time_start = omp_get_wtime();
// ... do something ...
double time_end = omp_get_wtime();

double duration = time_end - time_start;

Time Measurements

Compilation and Execution

26

 compile as usual but include OpenMP-specific flag
 e.g. gcc/clang/ARM: -fopenmp, Intel: -qopenmp, IBM: -qsmp=omp

 execute as usual, but set required environment variables
 e.g. OMP_NUM_THREADS for controlling degree of parallelism

 be sure to properly set up your job submission on clusters
 e.g. parallel environments for SLURM, SGE, etc.

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202127

 Want to test your code without
OpenMP parallelization?
 simply omit the OpenMP-specific

compiler flag
 pragmas will be ignored
 greatly facilitates debugging

 only need to take care of code that
requires library functions

#ifdef _OPENMP
// code that requires OpenMP
// header/library
#endif

Detour: Sequential Debugging Made Easy

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202128

 Two types of variables
 shared: global variables, read-only

data, usually arrays, etc.
 private: local or temporary variables,

loop counters, etc.

// shared integer
int n = 10;
// shared array
vector<double> in(n);

#pragma omp parallel for
for(int i = 0; i < n; i++) {

// private double
double x = 3 * in[i];
in[i] = x;

}

Data Sharing in OpenMP

Data Sharing Clauses

29

 private
 each thread gets a private copy of variable, independent of original variable
 private copy is not initialized (C++: default constructor is called)
 default for variables declared inside parallel region and loop counters of parallel loops
 often better to declare variables inside parallel region, reduces amount of code

(also minimizes “vertical distance” in source code)

 shared
 each thread references the same, global copy
 data races if access is not synchronized
 default for variables declared outside parallel region and global variables, often used for read-only access

 default
 can be set to shared, or none for C/C++
 default(none) helpful for detecting missing variables in clauses (compiler will complain!)

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

30

Data Sharing Clauses cont’d

double x = 3;
#pragma omp parallel private(x)
{

// <- here x is NOT equal to 3
x = 5;

}
// <- here x is NOT equal to 5

int f = ...
#pragma omp parallel shared(a,b,c,f)
private(temp) default(none)

{
#pragma omp for
for(int i = 0; i < n; ++i) {
temp = b[i] * f
c[i] = a[i] + temp;

}
}

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Data Sharing Clauses cont’d

31

 firstprivate
 like private, but private copies are initialized with value of copy outside of parallel region
 C++: copy constructor is called

 lastprivate
 like private, but outside copy is set to the private copy of the final iteration (for loops) or

last section (sections), NOT the iteration/section that was chronologically executed last

 threadprivate
 like private, but will persist across parallel regions
 master thread variable is storage-associated with original variable (not the case for private!)

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

 OpenMP is easy to write, but easy to
get wrong

 Most responsibility is delegated to
the application developer
 compiler will only do very basic checks

for you

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202133

 a race condition occurs when
 multiple threads can access
 the same memory location
 at the same time and
 at least one access is a write operation

 a program with a race condition is
always incorrect
 even if it manages to (sometimes)

compute correct results
 result is non-deterministic (depends on

execution order)

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions cont’d

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202134

int x = 0;

#pragma omp parallel
{

// short form for x = x + 1
// x is read and written by all
// threads! Race condition!
x += 1;

}

Race Conditions cont’d

int temp = x

temp = temp + 1

x = temp

Thread 1 Thread 2

int temp = x

temp = temp + 1

x = temp

Ti
m

e

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202135

 Arrays in C are accessed via a pointer
 copying the pointer does not copy the

underlying array but only the reference to
it

 copying array pointer usually not
required
 array elements are accessed via individual

indices
 pointer itself is usually only read, even

when writing to array

// shared integer
int n = 10;
// shared array
int a[n]

#pragma omp parallel for
for(int i = 0; i < n; i++) {

a[i] += 3; // no race condition!
}

Detour: Data Sharing, Arrays and Pointers in C

Exercises

36

 Connect to the cluster and copy the exercise from to your working directory
 e.g. cp –r /home/clusterusers/sc/Day_3 ~/Day_3

 Day_3/openmp/exercises contains template source code used for the following
exercises

 Day_3/openmp/solutions contains possible implementations
 Try yourself first, otherwise you’ll miss out on the learning experience!

 Day_3/openmp.tar.gz contains today’s exercises and additional code examples

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Exercise 1

37

 Goals:
 runtime library functions
 conditional compilations
 environment variables
 parallel regions with private and shared clauses

 A sequential hello world program is provided
 exercises/hello/hello.c

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202138

 Compile the program and run as
shown on the right side

 Expected result:
 program is not parallelized so nothing

changes

gcc hello.c –o hello -fopenmp
export OMP_NUM_THREADS=4
./hello

Exercise 1a

39

 Add a parallel region that prints the
ID of each thread and the total
number of threads

 Compile and run with 4 threads

 Example output shown on the right

 Why does the order of the output
change from run to run?

OMP_NUM_THREADS=4 ./hello
I am thread 0 of 4 threads
I am thread 2 of 4 threads
I am thread 3 of 4 threads
I am thread 1 of 4 threads

Exercise 1b

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

40

 Introduce a race condition by “forgetting” to
put a private clause on the omp parallel
directive. Can you observe the race condition
 with optimization turned on (-O3) and turned off

(-O0)?
 by increasing the number of threads?
 by adding a sleep(1) just before the

printf()?

 Example output shown on the right

 Why do you observe correct results for some
configurations/runs even though there is a race
condition in the program?

OMP_NUM_THREADS=4 ./hello
I am thread 2 of 4 threads
I am thread 2 of 4 threads
I am thread 2 of 4 threads
I am thread 2 of 4 threads

Exercise 1c

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

41

 Check that the program still works if
OpenMP is turned off

 Add a statement that informs the
user that OpenMP is not used.

 Example output shown on the right

g++ hello.c -o hello
./hello
The program is not compiled
with OpenMP

Exercise 1d

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Work Sharing

43

 distribute execution of following
code region among existing threads

 must be enclosed in parallel region,
cannot be directly nested

 do not launch new threads but
assign work to existing threads

 no barrier on entry
 implicit barrier on exit
 unless nowait clause specified

 for
 sections
 single
 task
 simd

Work Sharing Directives

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

44

 loop iterations may be executed in parallel
 requires loop iterations to be independent

(dependence analysis)
 matches single program multiple data

(SPMD) paradigm
 arbitrary iteration-to-thread mapping!

 most common form of data parallelism in
OpenMP
 but OpenMP also offers task parallelism

 can also take clauses
 reduction, schedule, collapse

#pragma omp parallel
{

#pragma omp for
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

45

 for loops must have canonical form
 requires number of iterations to be known

upon loop entry
 init, test, and inc expressions must be loop

invariant
 test only allows <, <=, >, >=
 inc only allows common patterns such as
++var, var++, --var, var--, var+=step,
var-=step, …

 loop variable must not be written to in loop body

 C: iterator must be integer or pointer
 C++: must be a random access iterator
 range-based for only with OpenMP ≥ 5.0

#pragma omp parallel
{

#pragma omp for
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for Directive cont’d

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

46

 specifies method of dividing iteration space
into chunks and assigning chunks to threads

 static: equally-sized chunks, fixed round-robin
assignment
 optional: chunk size (default is “approximately

equal in size & at most one chunk per thread”)
 dynamic: equally-sized chunks assigned turn-

by-turn, at runtime
 optional: chunk size (default is 1)

 guided: like dynamic, but chunk size decreases
proportionally to no. of unassigned iterations
 optional: minimum chunk size (default is 1)

 also available: auto, runtime

#pragma omp parallel
{

#pragma omp for schedule(dynamic,2)
for(/*init*/; /*test*/; /*inc*/) {

...
}

}

for: schedule Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

47

 specifies method of dividing and assigning
chunks

 static: equally-sized chunks, fixed round-robin
assignment
 optional: chunk size (default is “approximately

equal in size & at most one chunk per thread”)
 dynamic: equally-sized chunks assigned turn-

by-turn, at runtime
 optional: chunk size (default is 1)

 guided: like dynamic, but chunk size decreases
proportionally to no. of unassigned iterations
 optional: minimum chunk size (default is 1)

 also available: auto, runtime

for: schedule Clause cont’d
T2T1 T3

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

48

 given a loop nest, the goal is usually to
parallelize and distribute the outermost loop
 minimizes management overhead

 What if the outermost loop has few iterations?
 insufficient parallelism for modern systems
 nesting parallel pragmas runs the risk of

oversubscription (exponential growth)

 collapse combines multiple iteration spaces
into a single, larger one
 allows to exploit more parallelism

#pragma omp parallel for collapse(3)
for(int i = 0; i < 3; ++i) {

for(int j = 0; j < 4; ++j) {
for(int k = 0; k < 5; ++k) {

...
}

}
}

for: collapse Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

49

 sections may be executed concurrently,
each by an arbitrary thread of the team

 matches MPMD programming patterns
 coarse-grained parallelism

 easily leads to load imbalance if
individual sections not equally work-
intensive
 also, maximum degree of parallelism

limited by number of sections

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{ ... }
#pragma omp section
{ ... }
#pragma omp section
{ ... }

}
}

sections Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

50

 code region will only be executed by a
single, arbitrary thread
 useful for interacting with libraries, that

are not multi-threading-aware

 implicit barrier at the end for all
threads in the team

 also available as master variant
 like single, but for master thread
 no implicit barrier at the end

#pragma omp parallel
{
#pragma omp single
{
...

}
}

single Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

51

 allows to work with more irregular
problems than e.g. using flat arrays
 trees, linked lists, unstructured

meshes, etc.

 can be created on-demand
 no need to know the total number of

tasks before execution (contrary to
loops)

 automatic load balancing (threads that
are idle will fetch a task to work on)

Task-based Parallelism

T1

T3T2

T4

task
dependency

task graph

52

 allows explicit specification of tasks
 careful, firstprivate is the default

 whenever a thread encounters a task
directive, a task is generated
 task may be immediately executed
 or execution may be deferred

 wait for completion using taskwait
 waits for child tasks spawned by the

current task

int fib(int n) {
int i, j;
if (n < 2)
return n;

#pragma omp task shared(i)
i = fib(n-1);

#pragma omp task shared(j)
j = fib(n-2);

#pragma omp taskwait
return i + j;

}

task Directive

53

struct Node {
struct Node *next;
struct Data *data;

};

void traverse(struct Node *p) {
if (p->next) {

#pragma omp task
traverse(p->next);

}
process(p); // do work

}

int main(int argc, char **argv) {
struct Node *head;
head = ... // produce list
#pragma omp parallel
{

#pragma omp single
{

traverse(head);
}

}
}

Example: Traversing a Linked List

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202154

#pragma omp parallel for
for(int i = 0; i < N-1; i++) {

y[i] = x[i] + x[i+1];
}

#pragma omp parallel for
for(int i = 0; i < N-1; i++) {

x[i] = y[i];
}

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < N-1; i++) {

y[i] = x[i] + x[i+1];
}

#pragma omp for
for(int i = 0; i < N-1; i++) {

x[i] = y[i];
}

}

Combining Multiple Parallel Regions

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202155

 Reductions combine multiple values
into a single one
 sum, product, max, min, etc.

 inherently cause race conditions that
need to be avoided

 critical ensures that only one
thread executes the “critical region” at
a time
 solves the race condition, but is very

expensive (requires N critical regions)

double s = 0;
#pragma omp parallel for
for(int i = 0; i < N; i++) {

double val = in[i];
#pragma omp critical
s += val;

}

Reduction

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202156

 Reduce number of critical regions
 Only requires [number of threads]

critical regions
 potentially large performance gain,

depending on N

 critical can also take multiple
statements or function calls

double s = 0; // shared
#pragma omp parallel
{
double local_s = 0; // private

#pragma omp for
for(int i = 0; i < N; i++) {
double val = in[i];
local_s += val;

}

#pragma omp critical
s += local_s;

}

Faster Reduction

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202157

 same as critical, but restricted to a
single memory location and certain
operations

 restriction allows mapping to fast
hardware mechanisms

 keeps code hardware- and compiler-
independent compared to using
intrinsics
 but may just be a wrapper for critical

e.g. when lacking hardware support

double s = 0;
#pragma omp parallel for
for(int i = 0; i < N; i++) {

double val = in[i];
#pragma omp atomic
s += val;

}

Alternative: Atomic

Exercise 2a

58

 Goal:
 for workshare construct
 critical directive

 A sequential program that computes π is provided in exercises/pi/pi.c
 add parallel region and for directive

 Expected result: Result (π) is unpredictable when used with OMP_NUM_THREADS > 1

 Find and fix the two race conditions in the code!

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Exercise 2b

59

 Run the program multiple times and compare the result

 What do you observe?

 Investigate the run time as a function of OMP_NUM_THREADS!

 How can we improve the performance?

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

More OpenMP

61

 performs reduction to a single
variable in parallel or loop context
 arithmetic ops: +, -, *, max, min
 logical ops: &, &&, |, ||, ^
 careful with associativity of floating-

point operations!

 user-defined reductions are possible
(version 4.0)
 need to be declared with
#pragma omp declare reduction

#pragma omp parallel
{

#pragma omp for reduction(+:x)
for(int i = 0; i < 10; ++i) {
x += i;

}
}

// or

#pragma omp parallel reduction(-:x)
x -= omp_get_thread_num();

reduction Clause

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

62

 explicit barrier requested by user

 threads are not allowed to continue
until all have reached the barrier

 Implicit barrier at the end of for,
sections, single, task, simd
unless nowait specified
 explicit barrier usually not required

except for debugging

#pragma omp parallel
{
...
#pragma omp barrier
...

}

barrier Directive

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202163

 querying/controlling environment
 omp_get_num_threads()
 omp_get_thread_num()
 omp_get_nested()
 omp_in_parallel()
 and a few others, also setters!

 timing
 omp_get_wtime()
 omp_get_wtick()

 locking
 omp_init_lock()
 omp_set_lock()
 omp_unset_lock()
 omp_test_lock()
 omp_destroy_lock()

export OMP_DISPLAY_ENV=true
./a.out

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201511'
OMP_DYNAMIC = 'FALSE'
OMP_NESTED = 'FALSE'
OMP_NUM_THREADS = '8'
OMP_SCHEDULE = 'DYNAMIC'
OMP_PROC_BIND = 'FALSE'
OMP_PLACES = ''
OMP_STACKSIZE = '0'
OMP_WAIT_POLICY = 'PASSIVE'
OMP_THREAD_LIMIT = '4294967295'
OMP_MAX_ACTIVE_LEVELS = '2147483647'
OMP_CANCELLATION = 'FALSE'
OMP_DEFAULT_DEVICE = '0'
OMP_MAX_TASK_PRIORITY = '0'

OPENMP DISPLAY ENVIRONMENT END

Library Functions and Environment Variables

Exercise 3

64

 Goal:
 Usage of the reduction clause.

 Replace the critical directive in favor of a reduction clause!

 Investigate the performance as a function of OMP_NUM_THREADS!

 Expected result: almost linear scaling

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202165

 flushes
 low-level, fine-grained synchronization

constructs

 affinity
 OS-independent control over thread-core

mapping

 vectorization
 hardware- and compiler-independent use

of SIMD instructions

 accelerator support
 use e.g. NVIDIA GPUs without writing

CUDA code

 Fortran

 debuggging
 gdb, valgrind, Intel Inspector, etc.

Additional OpenMP Features not Covered Today

Summary

66

 main characteristics
 incremental parallelization

 programming, execution and memory models
 based on threads and shared data access
 mainly relies on compiler directives as programmer interface

 directives
 parallelism, data sharing, work sharing, synchronization

 exercises

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

Additional Resources

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 202167

 Introduction to High Performance Computing for Scientists and Engineers, Georg
Hager and Gerhard Wellein. 2010, CRC Press.

 OpenMP, Blaise Barney, Lawrence Livermore National Laboratory.
https://computing.llnl.gov/tutorials/openMP/

 “Parallel Programming for Science and Engineering” by Victor Eijkhout,
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming
.pdf

 OpenMP homepage: http://www.openmp.org

https://computing.llnl.gov/tutorials/openMP/
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf
http://www.openmp.org/

Image Sources

68

 Helen Lovejoy: https://simpsons.fandom.com/wiki/Helen_Lovejoy

Introduction to OpenMP - Philipp Gschwandtner, UniBZ, June 2021

https://simpsons.fandom.com/wiki/Helen_Lovejoy

	1st Summer School in HPC and AI (UniBZ, June 2021)�Introduction to Shared Memory Programming with OpenMP
	Motivation: Why use Parallelism?
	Motivation: Why consider using OpenMP?
	Motivation: Incremental Parallelization
	OpenMP
	Detour: Parallelism Terminology
	OpenMP vs. MPI, Shared vs. Distributed Memory
	OpenMP’s Main Characteristics
	OpenMP’s Caveats
	OpenMP Implementations
	How to Choose between OpenMP and MPI?
	OpenMP Programming and Execution Model
	Execution Model
	Programming Model
	Programming Model cont’d
	Memory Model
	OpenMP API
	OpenMP API
	Pragmas
	Combined Pragmas
	Most Important Directive: parallel
	Hello World in OpenMP
	Library Functions
	Controlling the Number of Threads
	Time Measurements
	Compilation and Execution
	Detour: Sequential Debugging Made Easy
	Data Sharing in OpenMP
	Data Sharing Clauses
	Data Sharing Clauses cont’d
	Data Sharing Clauses cont’d
	Race Conditions
	Race Conditions cont’d
	Race Conditions cont’d
	Detour: Data Sharing, Arrays and Pointers in C
	Exercises
	Exercise 1
	Exercise 1a
	Exercise 1b
	Exercise 1c
	Exercise 1d
	Work Sharing
	Work Sharing Directives
	for Directive
	for Directive cont’d
	for: schedule Clause
	for: schedule Clause cont’d
	for: collapse Clause
	sections Directive
	single Directive
	Task-based Parallelism
	task Directive
	Example: Traversing a Linked List
	Combining Multiple Parallel Regions
	Reduction
	Faster Reduction
	Alternative: Atomic
	Exercise 2a
	Exercise 2b
	More OpenMP
	reduction Clause
	barrier Directive
	Library Functions and Environment Variables
	Exercise 3
	Additional OpenMP Features not Covered Today
	Summary
	Additional Resources
	Image Sources

