
Introduction to
HPC Cluster (day 1)

First Summer School in HPC and AI
7th - 8th June 2021 Free University of Bozen

Marco Cianfriglia <m.cianfriglia@iac.cnr.it>

1

Who I am

Cranic Research Group
www.cranic.it

2

www.cranic.it

3

Agenda

● A brief introduction to HPC

● Access to Unibz cluster

● Unix/Linux fundamentals

● Bash scripting

4

A brief introduction to
HPC

5

What is an HPC Cluster

● A collection of computer, called nodes

connected by a fast network

● There may exist different types of

nodes for dedicated tasks (example,

equipped with GPUs)

● A special node, called login-node
where users login and submit jobs

● A storage area shared among nodes

6

When do we need an HPC cluster?

● Computations require much more memory than the amount available on your computer

● Simulations that need to be executed many times with different inputs

● Programs that may be run in parallel (MPI, OpenMP) speeding up the computation

● Some applications may benefit of hardware accelerators, like GPUs

7

TOP 3 HPC in the world (November 2020 list)

https://www.top500.org/lists/top500/list/2020/11/
8

HPC in numbers

Fugaku Supercomputer - 1st HPC
system in the world - Top500
November 2020

158976 nodes
7630848 cores
~ 5PB of Memory (5087232 GB)
~442010 TFlop/s

“The six-year budget for the
system and related technology
development totaled about $1
billion”
(The Ney York Times 2020-06-22)

Soruce blog.global.fujitsu.com

9

HPC cluster vs laptop

In 2017, Piz Daint was in third position of the Top500 list:

“what Piz Daint can process in one day, a laptop would take 900 years.” (*)

(*) https://www.swissinfo.ch/eng/speed-processing_swiss-supercomputer-third-fastest-in-the-world/43271536

10

HPC Applications

Source WikipediaSource Ohio.edu

Source Forbes

Source Colorado.edu

Source WikipediaSource Forbes

11

Access to Unibz Cluster

12

Connect to login node: slurm-ctrl.inf.unibz.it

1. Connect to VPN with your credentials (if

needed).

Please use your full username (@domain)

2. Connect to the login node:

ssh <username>@slurm-ctrl.inf.unibz.it

13

Login node

14

Unibz Storage

HOME

● It is shared among all the nodes

SCRATCH

● it is available on /scratch

● It is local to each node

● It is a temporary storage

For the hands-on we will use the home partition, unless specified.

15

Scratch partition

It is a temporary fast, unreliable storage, that can be used in several HPC scenarios:

● You need to store some temporary data during a long computation

● Your input dataset is too big to be stored on a permanent storage

● Your application uses intensively I/O and you may take advantage of fast storage

Two scratch deployment options :

● Local to the node

● Shared among cluster nodes

16

Unix/Linux
fundamentals

17

History

● Origins and history
○ Developed in 70 by Bell Labs

○ Extreme portability and flexibility, it is written in C

● Many proprietary distributions/implementations
○ AIX (IBM), SOLARIS (SUN),

○ Mac OS X (Apple), HP-UX (HP)

● Many Open-source distributions/implementations
○ Linux (Debian, Suse, Red Hat, Ubuntu, …)

○ FreeBSD, OpenBSD, …

○ Android

18

Features

● multi-tasking
○ Many programs can be executed concurrently

○ The computational and memory resources are shared among processes

● multi-user
○ Different users can work concurrently on the same machine

● memory protection
○ Every process can have exclusive access to an area in memory. This mechanism improves security

and stability of the whole system

19

Users

● On Unix every user can start working only after a successful authentication. This usually
requires a username and a corresponding password

● To each user are assigned some resources (e.g. disk space)

● An unique identifier UID is assigned to each user together with the Group Identifier GID.
These IDs are used by the system to manage the permissions

● There exist some users with special privileges. The default is root
○ it has maximum privileges
○ It can do (almost) everything on the system
○ It is characterized by UID=0

20

Shell

● They provide an interface between the operating system and the users.

● They are special programs that allow users to run and manage other programs (for

example: redirect input/output, scripts, etc)

● There exist several implementations sh, csh, ksh, tcsh, bash but the latter two are the

most used

21

Secure SHell (SSH)

● SSH is a program for logging into a remote machine and for executing commands on it

● It establishes a secure encrypted channel between two hosts over an insecure network

● Examples:
a. ssh <username>@host # login on host with user <username>

b. ssh <username>@host mkdir -p testdir # launch mkdir command on host

c. ssh -l username host #Same as a)

d. ssh -i <path-to-private-key> username@host # You may use public key authentication

e. ssh -L8888:localhost:8890 username@host # Some advanced features - port forwarding

22

Secure CoPy (SCP)

● It copies files (and directories) between hosts on a network

● It relies on ssh for data transfer, and uses the same authentication of ssh

● The source and target may be
a. local pathname (absolute or relative paths)
b. remote host path

● Examples:
a. scp local-file <username>@remote-host: <dest>#Copy local-file to remote host

b. scp <username>@remote-host:<remote-file> . #Copy remote-file to local host on
the current directory (.)

c. scp -r local-dir <username>@remote-host:dest # Copy recursively a directory

23

Exercise: Move file from/to the unibz cluster

1. Use scp to copy the file /tmp/testscp from the login-node to your computer

2. On your computer, create a text file <name.surname> and fill it with your name

(es. marco.cianfriglia)

3. Copy the <name.surname> file from your pc to the home directory on the login-node

4. Use ssh to execute the following program on the login-node ‘cat <name.surname>’

(use your name and surname)

Login-node: slurm-ctrl.inf.unibz.it

24

Exercise: Move file from/to the unibz cluster
Solution

1. Use scp to copy the file /tmp/testscp from the login-node to your computer

a. scp gst_mcianfriglia@slurm-ctrl.inf.unibz.it:/tmp/testscp .

2. On your computer, create a text file <name.surname> and fill it with your name

3. Copy the <name.surname> file from your pc to the home directory on the login-node

a. scp marco.cianfriglia gst_mcianfriglia@slurm.ctrl.inf.unibz.it:

4. Use ssh to execute the following program on the login-node ‘cat <name.surname>’
(use your name and surname)

a. ssh gst_mcianfriglia@slurm-ctrl.inf.unibz.it cat marco.cianfriglia

25

mailto:gst_mcianfriglia@slurm-ctrl.inf.unibz.it
mailto:gst_mcianfriglia@slurm.ctrl.inf.unibz.it
mailto:gst_mcianfriglia@slurm-ctrl.inf.unibz.it

Unix file system

● / is called the root directory

● Each file on the file system has a
unique pathname starting from /

● The path names starting with / are
called absolute paths, otherwise
are called relative paths

/home/user1/papers (absolute)

 user1/papers (relative, starts
from /home)

● Two special names:
○ .. parent directory
○ . current directory

Relative path: be careful.
Example: bin ?

● /bin
● /usr/bin
● /home/user1/bin

It depends on your current working directory
(pwd or echo $PWD) 26

Some basic commands

Command
name

Usage Command
name

Usage

ls Prints the list of files and
directories

cp Copies files and directories

mv Moves files or directories rm Removes files and
directories

mkdir Creates a new directory cd Changes working directory

rmdir Removes directories pwd Prints current working
directory

27

File system commands example

● Move to /usr directory (absolute path)
○ cd /usr

● From /usr move to local/lib (relative path)
○ pwd #Print working directory

/usr
○ cd local/lib; pwd #The ; can be used to sequence of commands on the same line

/usr/local/lib

● Move back to the parent directory (i.e. /usr/local)
○ cd .. (Notice the blank space between cd and ..)

28

Some Unix commands

Command
name

Usage Command
name

Usage

file Prints file type echo Prints input string

cat Prints the content of a file sort Order a file

head Prints the first lines of a file tail Prints the last lines of a file

less, more Prints the content of a file page
by page

cut Selects columns of a file

paste Merges files by columns find Look for files/directories in
the filesystem

diff, sdiff Shows differences between
files

grep Look for a pattern inside a
file 29

Grep

● Look for all the words contain ‘apple’ in /usr/share/dict/words
○ grep apple /usr/share/dict/words

● Look for all the words starting with ‘apple’ in /usr/share/dict/words
○ grep ^apple /usr/share/dict/words

30

. (period character) Any single character can exist at the specified location

[C1 C2 ..Cn] C1 or C2 or .. or Cn

[^C1 C2 … Cn] everything != C1, …, Cn

Pattern* The pattern 0 or more times

Pattern+ The pattern 1 or more times

^ The beginning of the line

$ The end of the line

stdin, stdout, stderr

Usually a program:

○ reads the input from the standard input, stdin
○ writes the output on the standard output, stdout
○ writes any error on the standard error, stderr

If not specified:

● stdin = keyboard

● stdout = stderr = screen

31

stdin, stdout, stderr

● It is possible to redirect stdin, stdout and stderr.

On Bash:

● ‘<’ redirects the stdin

● ‘>’ and ‘2>’ redirect respectively stdout and stderr to a file (if file exists it will be

truncated, else it will be created)

● ‘>>’ or ‘2>>’ will append to an existing file

● ‘&>’ redirects both stdout and stderr

32

stdin, stdout, stderr
Examples

● ls -l >list.txt # The output of ‘ls -l’ will be stored in the file list.txt

 # If list.txt exists, it will be truncated, otherwise it will be created

● ls -l >> list2.txt # The output of ‘ls -l’ will be stored in the file list2.txt

 # If list2.txt exists the new content will be appended at the end of the file

● sort < input_file.txt > input_file.sorted
sort will read input_file.txt and its output will be saved on input_file.sorted

● fakecommand 2> error.out

33

Exercise shell

● Redirect on the file out1.txt the stdout of the following command: ‘ls -1 ${HOME}’

● Redirect on the file err1.txt the stderr of the following command: ‘fakecmd run’

● Run the following command and append the stdout on out1.txt and redirect

the stderr on err2.txt
ls / mickeymouse

● Print the content of out1.txt and err2.txt on screen using cat

34

Exercise shell
Solutions

● Redirect on the file out1.txt the stdout of the following command: ‘ls -1 ${HOME}’

● Redirect on the file err1.txt the stderr of the following command: ‘fakecmd run’

● Run the following command and append the stdout on out1.txt and redirect
stderr on err2.txt : ls / mickeymouse

● Print the content of out1.txt and err2.txt on screen using cat

❖ ls -1 ${HOME} > out1.txt

❖ fakecmd run 2> err1.txt

❖ ls / mickeymouse >> out1.txt 2>err2.txt

❖ cat out1.txt
❖ cat err2.txt

35

Exercise shell

● Run the following command and redirect both stdout and stderr on outerr3.txt
ls / mickeymouse

● Print the content of outerr3.txt using less/more

● Sort the entries in the file out1.txt and save the results in file out1.sorted

● Create a directory in your home called output

36

Exercise shell
Solutions

● Run the following command and redirect both stdout and stderr on outerr3.txt

ls / mickeymouse

● Print the content of outerr3.txt using less/more

● Sort the entries in the file out1.txt and save the results in file out1.sorted

● Create a directory in your home called output

❖ ls / mickeymouse &> outerr3.txt

❖ less outerr3.txt
❖ more outerr3.txt

❖ sort out1.txt > out1.sorted

❖ mkdir ${HOME}/output

37

Exercise shell

● Change your working directory to ~/output (~ refers to the home directory)

● Print your current working directory

● Copy out1.txt out1.sorted and out2.txt into the current working directory (~/output)

● Copy the directory ~/output to your local computer /tmp folder (hint: remember scp)

38

Exercise shell
Solutions

● Change your working directory to ~/output (~ refers to the home directory)

● Print your current working directory

● Copy out1.txt out1.sorted and out2.txt into the current working directory (~/output)

● Copy the directory ~/output to your local computer /tmp folder (hint: remember scp)

❖ cd ${HOME}/output or cd ~/output

❖ pwd

❖ cp ${HOME}/out1.txt ${HOME}/out1.sorted .
❖ cp ${HOME}/out1.txt ${HOME}/out1.sorted ${HOME}/output

❖ scp -r <username>@slurm-ctrl.inf.unibz.it:output /tmp

39

The pipe |

● A pipe ‘|’ allows to concatenate commands by redirecting the stdout of a command as the

stdin of the next command.

● It is a simple yet powerful tool that allows to solve efficiently many tasks

List in alphabetical order all the different words of a text, with the number of occurrences next

to them, in order of frequency (first the most frequent words).

40

● tr -s ' ' '\n’ < text | sort | uniq -c | sort -n -r

N.B. This is more efficient than executing each command individually . Do you know why?

Exercise pipe

● Print the files and directory of the /tmp folder on the login-node, one record per line

(hint: see man ls), sort the records lexicographically and store the result on

~/output/tmp.sorted

41

❖ ls -1 /tmp | sort > ~/output/tmp.sorted

Linux file permissions

ls -la
-rwxrw-r-x user group filename
drwx---r-x user group directory

● What does it mean?

r=read, w=write, x=execute (regular files)

r=read, w=create/remove, x=search (directories)

r=read, w=write, x=n/a (special files, like device files)

● How to change files and directories permissions?

chmod [OPTION] MODE/OCTAL-MODE FILE …
What does the following command chmod 753 file ?

42

Octal Binary Permission

0
1
2
3

000
001
010
011

--x
-w-
-wx

4
5
6
7

100
101
101
111

r--
r-x
rw-
rwx

Linux File Permissions

43

Exercise command line

● List the permissions of the file ~/output/out1.txt

● Set the permissions for ~/output/out1.txt to rwx for the owner, rw for the group and zero
permission for other

● Set the permissions for the ~/output directory to r-- rw-rw- . Can you list the content of the

directory? Can you access the content of its files?

● Set the permissions for the ~/output directory to --x rw-rw- . Can you list the content of

the directory? Can you access the content of its files?

44

Exercise command line

● List the permissions of the file ~/output/out1.txt

● Set the permissions for ~/output/out1.txt to rwx for the owner, rw for the group and zero
permission for other

● Set the permissions for the ~/output directory to r-- rw-rw- . Can you list the content of the
directory? Can you access the content of its files?

● Set the permissions for the ~/output directory to --x rw-rw- . Can you list the content of
the directory? Can you access the content of its files?

45

❖ ls -l ~/output/out1.txt

❖ chmod 760 ~/output/out1.txt

❖ chmod 566 ~/output; Yes, but error; No

❖ chmod 166 ~/output; No; Yes

Bash and scripting

46

Some BASH important files

● When an interactive shell starts it reads and executes the ~/.bashrc config file

● When bash is invoked as an interactive login shell it reads and executes commands from

the files (if they exist)
○ /etc/profile

○ ~/.bash_profile

○ ~/.bash_login

○ ~/.profile

● When a login shell exits, bash reads and executes commands from the file ~/.bash_logout,

if it exists.

● The commands history can be found in ~/.bash_history
○ Command history displays the content of ~/.bash_history

47

vi Editor

vi is a command line editor, available on Linux (vim the enhanced version)

Two operative modes:

● Command-mode
● Input-mode

It starts in command-mode; you may switch from command to input modes by using several

commands (see next slides)

To exit input-mode, use the Esc button (<ESC>)

Once in input-mode, any character you insert will be treated as text and it will be added to your

file.

48

vi editor minimal cheetsheet

Input Commands
(end with <ESC>)

a Append after cursor
A Append after line
i Insert before cursor
I Insert before line
o Open line below
O Open line above
r Replace one character
R Replace many characters
p Put after
P Put before

File Management Commands
(please note the ‘:’ before commands)

:w Store the file content
:wq Store the file content and quit
:x Same as :wq
:q! Quit without saving changes

Auxiliary commands
x Delete character to right of cursor
X Delete character to left of cursor
D Delete the rest of the line
dd Delete current line
y Copy the current line
u Undo last change 49

vi Example

From your terminal

● Launch vi to start writing a new file

vi my_file

From vi

● Switch from command-mode to input-mode
Press i

● Write your name

● Come back to command-mode, save the content and quit vi
a. Press <Esc> to exit input-mode
b. :wq or :x or :w and :q to save changes and quit

50

Bash scripting

It is possible to automate some operations by using a shell script

Example: test.sh
#!/bin/bash

S=”count”
for i in 0 1 2 3
do

echo “${S}: ${i}”
done
In order to execute it

1. chmod u+x test.sh # add execution permission to the owner
2. ./test.sh # execute it

51

Bash scripting

Example: test.sh

#!/bin/bash

S=”count”

for i in 0 1 2 3

do

echo “${S}: ${i}”

done

● #! shebang: is used to tell the operating
system which interpreter to use to parse the
rest of the file

● S is a variable

● for do … done defines a loop

● i is the variable that counts the loop iterations

● echo: a shell command that takes as input a
string and it prints it to the screen

52

Bash Variables

● Variables allow programmers to store data, alter and reuse them throughout the script

● Any variable can get any kind of data, basically strings or numbers

● The name of the variable is the string preceding the =

● To access the value of a variable use the $

S=”summer school” #Assing the string “summer school” to S

echo “${S}” # Echo print the value of S

53

Bash Built-in variables

● $# contains the number of input parameters (like argc)

● $0 contains the script name

● $j with 1 <= j<= $# are the input parameters

● $? the exit code of the last executed command

● $IFS Internal Field separator (default space, tab, and newline)

54

Bash if-then-else

if [TEST]

then

<do some stuff>

elif [TEST2]

then

<do some stuff-2>

else

<do some stuff-3]

fi

55

● The if-then-else statement starts
with if keyword, followed by a
conditional expression and the
keyword then.

● The statement ends with the
keyword fi

● The else /elif statements are
optionals

● The elif is followed by a conditional
expression and the keyword then

● It is possible to have nested if
statements

Common test operator

INT1 -eq INT2: True if INT1== INT2

INT1 -ne INT2: True if INT1 != INT2

INT1 -gt INT2: True if INT1 > INT2

INT1 -lt INT2: True if INT1 < INT2

INT1 -ge INT2: True if INT1 >= INT2

INT1 -le INT2: True if INT1 <= INT2

STR1 = STR2: True if STR1 is equal to STR2

STR1 != STR2: True if STR1 is not equal to STR2

56

-d FILE: True if FILE exists and is a directory

-e FILE: True if FILE exists and is a file

-f FILE: True if FILE exists and is a regular file

-r FILE: True if FILE exists and is readable

-w FILE: True if FILE exists and is writable

-x FILE: True if FILE exists and is executable

-n VAR: True if the length of VAR is > 0

-z VAR: True if the VAR is empty

if-then-else examples

#!/bin/bash

#This is a comment

ARGC=2

if [$# -ne ${ARGC}]

then

echo “Usage $0: <src> <dst>”

exit 1

fi

cp $1 $2

exit $?

57

#!/bin/bash
ARGC=1
USER=”test-user”
if [$# -ne ${ARGC}]
then

echo “Usage $0: <user>”
exit 1

fi

if [“${USER}” == “${1}”]
then

echo “Hi ${USER}”
else

echo “Bye”
fi

Bash array

● An array is a variable containing multiple values.

● Any variable may be used as an array.

● There is no maximum limit to the size of an array, nor any requirement that member

variables be indexed or assigned contiguously.

● Arrays are zero-based: the first element is indexed with the number 0

58

Bash array

Multiple declaration options:

● Indirect declaration: ARRAY[idx]=value, idx is treated as an arithmetic expression that must
evaluate to a positive number

● Explicit declaration : declare -a ARRAY (declare shell builtins)

● Compound assignments: ARRAY=(value1 value2 … valueN)

● Dereferencing the variables in an array:
○ echo ${ARRAY[*]} # print all the array values * or @ have the same effect. NB the {} are necessary
○ echo ${ARRAY[2]} # print the second element of the array

59

Bash for loops

Explicit range
for i in 1 2 … N
do

<do stuff on i>
done

60

Explicit range
for f in file1 file2 ...fileN
do

<do stuff on f>
done

Iterates over cmd-output

for r in $(Unix/Linux cmd output)

do

<do stuff on r>

done

For-loops and array
F=(“file1” “file2” … “fileN”)
for r in ${F[@]}
do

<do stuff on r>
done

Range border
for i in {1..100}
do

<do stuff on i>
done

Bash while loop

while [condition]
do
 <do some stuff>
done

#!/bin/bash

x=0
while [$x -lt 10]
do

echo “${x}”
x=$(($x + 1))

done

61

● To iterate over variable, for loops are
more convenient
No need to update the counter

● While loops usually used to read data
line by line from a file

#!/bin/bash
...
INPUT_FILE=”/etc/passwd”
while read -r line
do

echo $line
done < “${INPUT_FILE}”

Exercise

● Write a Bash script (counter.sh) that prints all the number from 0 to 1000

● Write a Bash script (lines.sh) that reads the output of ‘ls -1 /tmp’ and add the prefix “LINE:”
to each line

● Write a Bash script (heartbit.sh) that takes as input a file containing a list of ip addresses,
one per line and the name of the output file
For each ip address, run the command “ping -c 2” and save its output and error by
appending it to the output file.

● Write a Bash script (compareFiles.sh) that takes as input two files and returns the one that
has more lines

62

Exercise
Solution

63

Exercise
Solution

64

